Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Physiol Endocrinol Metab ; 326(5): E588-E601, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477875

ABSTRACT

In rodents, loss of estradiol (E2) reduces brown adipose tissue (BAT) metabolic activity. Whether E2 impacts BAT activity in women is not known. BAT oxidative metabolism was measured in premenopausal (n = 27; 35 ± 9 yr; body mass index = 26.0 ± 5.3 kg/m2) and postmenopausal (n = 25; 51 ± 8 yr; body mass index = 28.0 ± 5.0 kg/m2) women at room temperature and during acute cold exposure using [11C]acetate with positron emission tomography coupled with computed tomograph. BAT glucose uptake was also measured during acute cold exposure using 2-deoxy-2-[18F]fluoro-d-glucose. To isolate the effects of ovarian hormones from biological aging, measurements were repeated in a subset of premenopausal women (n = 8; 40 ± 4 yr; BMI = 28.0 ± 7.2 kg/m2) after 6 mo of gonadotropin-releasing hormone agonist therapy to suppress ovarian hormones. At room temperature, there was no difference in BAT oxidative metabolism between premenopausal (0.56 ± 0.31 min-1) and postmenopausal women (0.63 ± 0.28 min-1). During cold exposure, BAT oxidative metabolism (1.28 ± 0.85 vs. 0.91 ± 0.63 min-1, P = 0.03) and net BAT glucose uptake (84.4 ± 82.5 vs. 29.7 ± 31.4 nmol·g-1·min-1, P < 0.01) were higher in premenopausal than postmenopausal women. In premenopausal women who underwent gonadotropin-releasing hormone agonist, cold-stimulated BAT oxidative metabolism was reduced to a similar level (from 1.36 ± 0.66 min-1 to 0.91 ± 0.41 min-1) to that observed in postmenopausal women (0.91 ± 0.63 min-1). These results provide the first evidence in humans that reproductive hormones are associated with BAT oxidative metabolism and suggest that BAT may be a target to attenuate age-related reduction in energy expenditure and maintain metabolic health in postmenopausal women.NEW & NOTEWORTHY In rodents, loss of estrogen reduces brown adipose tissue (BAT) activity. Whether this is true in humans is not known. We found that BAT oxidative metabolism and glucose uptake were lower in postmenopausal compared to premenopausal women. In premenopausal women who underwent ovarian suppression to reduce circulating estrogen, BAT oxidative metabolism was reduced to postmenopausal levels. Thus the loss of ovarian function in women leads to a reduction in BAT metabolic activity independent of age.


Subject(s)
Adipose Tissue, Brown , Fluorodeoxyglucose F18 , Humans , Female , Adipose Tissue, Brown/metabolism , Fluorodeoxyglucose F18/metabolism , Energy Metabolism , Glucose/metabolism , Positron-Emission Tomography , Estrogens/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Cold Temperature , Thermogenesis
2.
J Antimicrob Chemother ; 79(1): 179-185, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38000089

ABSTRACT

BACKGROUND: Integrase strand transfer inhibitors (INSTIs) are associated with excessive weight gain among a subset of persons with HIV (PWH), due to unclear mechanisms. We assessed energy intake (EI) and expenditure (EE) following switch off and onto INSTIs. METHODS: PWH with >10% weight gain on an INSTI-based regimen switched INSTI to doravirine for 12 weeks, then back to INSTI for 12 weeks while keeping their remaining regimen stable. Twenty-four-hour EE, EI and weight were measured on INSTI, following switch to doravirine, and upon INSTI restart. Mixed models analysed changes over time. RESULTS: Among 18 participants, unadjusted 24 h EE decreased by 83 (95% CI -181 to 14) kcal following switch to doravirine, and by 2 (-105 to 100) kcal after INSTI restart; energy balance (EE-EI) increased by 266 (-126 to 658) kcal from Week 0 to Week 12, and decreased by 3 (-429 to 423) kcal from Week 12 to Week 24. Trends toward weight loss occurred following switch to doravirine [mean -1.25 (-3.18 to 0.69) kg] and when back on INSTI [-0.47 (-2.45 to 1.52) kg]. Trunk fat decreased on doravirine [-474 (-1398 to 449) g], with some regain following INSTI restart [199 (-747 to 1145) g]. Fat-free mass decreased on doravirine [-491 (-1399 to 417) g] and increased slightly after INSTI restart [178 (-753 to 1108) g]. CONCLUSIONS: Among PWH with >10% weight gain on an INSTI, switch to doravirine was associated with a trend towards decreases in 24 h EE, weight, trunk fat mass and fat-free mass. Observed changes were not significant, but suggest a mild weight-suppressive effect of doravirine among PWH.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV Integrase , Humans , HIV Infections/drug therapy , HIV Infections/complications , HIV Integrase Inhibitors/therapeutic use , Weight Gain , Body Composition , Integrases
3.
Sensors (Basel) ; 24(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38793899

ABSTRACT

Metabolic syndrome poses a significant health challenge worldwide, prompting the need for comprehensive strategies integrating physical activity monitoring and energy expenditure. Wearable sensor devices have been used both for energy intake and energy expenditure (EE) estimation. Traditionally, sensors are attached to the hip or wrist. The primary aim of this research is to investigate the use of an eyeglass-mounted wearable energy intake sensor (Automatic Ingestion Monitor v2, AIM-2) for simultaneous recognition of physical activity (PAR) and estimation of steady-state EE as compared to a traditional hip-worn device. Study data were collected from six participants performing six structured activities, with the reference EE measured using indirect calorimetry (COSMED K5) and reported as metabolic equivalents of tasks (METs). Next, a novel deep convolutional neural network-based multitasking model (Multitasking-CNN) was developed for PAR and EE estimation. The Multitasking-CNN was trained with a two-step progressive training approach for higher accuracy, where in the first step the model for PAR was trained, and in the second step the model was fine-tuned for EE estimation. Finally, the performance of Multitasking-CNN on AIM-2 attached to eyeglasses was compared to the ActiGraph GT9X (AG) attached to the right hip. On the AIM-2 data, Multitasking-CNN achieved a maximum of 95% testing accuracy of PAR, a minimum of 0.59 METs mean square error (MSE), and 11% mean absolute percentage error (MAPE) in EE estimation. Conversely, on AG data, the Multitasking-CNN model achieved a maximum of 82% testing accuracy in PAR, a minimum of 0.73 METs MSE, and 13% MAPE in EE estimation. These results suggest the feasibility of using an eyeglass-mounted sensor for both PAR and EE estimation.


Subject(s)
Energy Metabolism , Exercise , Eyeglasses , Neural Networks, Computer , Wearable Electronic Devices , Humans , Energy Metabolism/physiology , Exercise/physiology , Adult , Male , Calorimetry, Indirect/instrumentation , Calorimetry, Indirect/methods , Female , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods
4.
Appetite ; 182: 106426, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36539160

ABSTRACT

Appetite is a determinant of dietary intake and is impacted by sex hormones, exercise, and body composition among individuals without chronic conditions. Whether appetite is altered by exercise in the context of estrogen suppression and cancer survivorship is unknown. This randomized cross-over study compared appetite and ad libitum energy intake (EI) after acute resistance exercise (REx) versus sedentary (SED) conditions and in relation to body composition and resting metabolic rate (RMR) in breast cancer survivors (BCS). Physically inactive premenopausal females with previous stage I-III estrogen receptor-positive breast cancer completed a single bout of REx or SED 35 minutes after a standardized breakfast meal. Appetite visual analog scales and hormones (total ghrelin and peptide-YY [PYY]) were measured before and 30, 90, 120, 150, and 180 minutes post-meal and expressed as area under the curve (AUC). Participants were offered a buffet-type meal 180 minutes after breakfast to assess ad libitum EI. Body composition (dual X-ray absorptiometry) and RMR (indirect calorimetry) were measured during a separate visit. Sixteen BCS were included (age: 46 ± 2 y, BMI: 24.9 ± 1.0 kg/m2). There were no differences in appetite ratings or EI between conditions. There were no differences in appetite hormone AUC, but REx resulted in lower ghrelin 120 (-85 ± 39 pg/mL, p = 0.031) and 180 (-114 ± 43 pg/mL, p = 0.018) minutes post-breakfast and higher PYY 90 (21 ± 10 pg/mL, p = 0.028) and 120 (14 ± 7 pg/mL, p = 0.041) minutes post-breakfast. Fat-free mass and RMR negatively correlated with hunger and prospective food consumption AUC after SED, but not REx. In sum, a single REx bout temporarily reduces orexigenic and increases anorexic appetite hormones, but not acute subjective appetite sensations or EI.


Subject(s)
Breast Neoplasms , Cancer Survivors , Resistance Training , Female , Humans , Adult , Middle Aged , Appetite , Ghrelin/metabolism , Energy Intake , Peptide YY/metabolism , Sensation , Cross-Over Studies
5.
Int J Obes (Lond) ; 46(8): 1510-1517, 2022 08.
Article in English | MEDLINE | ID: mdl-35577898

ABSTRACT

BACKGROUND/OBJECTIVES: To examine the association between indices of sleep quantity and quality with dietary adherence, physical activity adherence, and weight loss during a behavioral weight loss intervention. METHODS: Adults (n = 156) with overweight and obesity (40 ± 9 years, 84% female, BMI: 34.4 ± 4.2 kg/m2) participated in an 18-month behavioral weight loss intervention which prescribed a reduced calorie diet (1200-1800 kcal/d) and increased physical activity (300 min/wk). Body weight, indices of sleep (SenseWear armband; SWA), energy intake (EI, 3-day food records), and moderate-to-vigorous physical activity (SWA) were measured at baseline, 6, 12, and 18 months. Linear mixed effects models examined the association between sleep and weight change over time. Additional models were adjusted for covariates including age, BMI, sex, race, ethnicity, study completion, randomization, EI, and physical activity. Secondary analyses examined the association between sleep and adherence to diet and physical activity recommendations. RESULTS: Mean weight loss was 7.7 ± 5.4, 8.4 ± 7.9, and 7.1 ± 9.0 kg at 6, 12, and 18 months, respectively. Lower sleep efficiency, higher wake after sleep onset (WASO), more awakenings, and higher sleep onset latency (SOL) were significantly associated with attenuated weight loss (p < 0.05). Lower sleep efficiency, more awakenings, and higher SOL remained significantly associated with blunted weight loss after adjustment for covariates (p < 0.05). Later waketime, longer time in bed, longer sleep duration, higher WASO, more awakenings, and higher SOL were associated with lower odds of achieving ≥300 min/wk of moderate-to-vigorous physical activity, adjusted for covariates (FDR p < 0.05). CONCLUSIONS: Future studies should evaluate whether incorporating strategies to improve sleep health within a behavioral weight loss intervention leads to improved adherence to diet and physical activity recommendations and enhanced weight loss. CLINICAL TRIALS IDENTIFIER: NCT01985568.


Subject(s)
Guideline Adherence , Sleep , Weight Loss , Adult , Body Mass Index , Diet , Exercise , Female , Humans , Male , Middle Aged , Overweight
6.
Int J Obes (Lond) ; 45(9): 2074-2082, 2021 09.
Article in English | MEDLINE | ID: mdl-34127805

ABSTRACT

BACKGROUND/OBJECTIVES: Individuals successful at weight loss maintenance engage in high amounts of physical activity (PA). Understanding how and when weight loss maintainers accumulate PA within a day and across the week may inform PA promotion strategies and recommendations for weight management. METHODS: We compared patterns of PA in a cohort of weight loss maintainers (WLM, n = 28, maintaining ≥13.6 kg weight loss for ≥1 year, BMI 23.6 ± 2.3 kg/m2), controls without obesity (NC, n = 30, BMI similar to current BMI of WLM, BMI 22.8 ± 1.9 kg/m2), and controls with overweight/obesity (OC, n = 26, BMI similar to pre-weight loss BMI of WLM, 33.6 ± 5.1 kg/m2). PA was assessed during 7 consecutive days using the activPALTM activity monitor. The following variables were quantified; sleep duration, sedentary time (SED), light-intensity PA (LPA), moderate-to-vigorous intensity PA (MVPA), and steps. Data were examined to determine differences in patterns of PA across the week and across the day using mixed effect models. RESULTS: Across the week, WLM engaged in ≥60 min of MVPA on 73% of days, significantly more than OC (36%, p < 0.001) and similar to NC (59%, p = 0.10). Across the day, WLM accumulated more MVPA in the morning (i.e., within 3 h of waking) compared to both NC and OC (p < 0.01). WLM engaged in significantly more MVPA accumulated in bouts ≥10 min compared to NC and OC (p < 0.05). Specifically, WLM engaged in more MVPA accumulated in bouts of ≥60 min compared to NC and OC (p < 0.05). CONCLUSIONS: WLM engage in high amounts of MVPA (≥60 min/d) on more days of the week, accumulate more MVPA in sustained bouts, and accumulate more MVPA in the morning compared to controls. Future research should investigate if these distinct patterns of PA help to promote weight loss maintenance.


Subject(s)
Exercise/psychology , Time Factors , Weight Reduction Programs/standards , Adult , Analysis of Variance , Body Mass Index , Colorado/epidemiology , Cross-Sectional Studies , Exercise/physiology , Female , Humans , Male , Middle Aged , Obesity/epidemiology , Obesity/physiopathology , Obesity/therapy , Weight Reduction Programs/methods , Weight Reduction Programs/statistics & numerical data
7.
Proc Natl Acad Sci U S A ; 115(23): E5390-E5399, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784788

ABSTRACT

Proteomics holds great promise for understanding human physiology, developing health biomarkers, and precision medicine. However, how much the plasma proteome varies with time of day and is regulated by the master circadian suprachiasmatic nucleus brain clock, assessed here by the melatonin rhythm, is largely unknown. Here, we assessed 24-h time-of-day patterns of human plasma proteins in six healthy men during daytime food intake and nighttime sleep in phase with the endogenous circadian clock (i.e., circadian alignment) versus daytime sleep and nighttime food intake out of phase with the endogenous circadian clock (i.e., circadian misalignment induced by simulated nightshift work). We identified 24-h time-of-day patterns in 573 of 1,129 proteins analyzed, with 30 proteins showing strong regulation by the circadian cycle. Relative to circadian alignment, the average abundance and/or 24-h time-of-day patterns of 127 proteins were altered during circadian misalignment. Altered proteins were associated with biological pathways involved in immune function, metabolism, and cancer. Of the 30 circadian-regulated proteins, the majority peaked between 1400 hours and 2100 hours, and these 30 proteins were associated with basic pathways involved in extracellular matrix organization, tyrosine kinase signaling, and signaling by receptor tyrosine-protein kinase erbB-2. Furthermore, circadian misalignment altered multiple proteins known to regulate glucose homeostasis and/or energy metabolism, with implications for altered metabolic physiology. Our findings demonstrate the circadian clock, the behavioral wake-sleep/food intake-fasting cycle, and interactions between these processes regulate 24-h time-of-day patterns of human plasma proteins and help identify mechanisms of circadian misalignment that may contribute to metabolic dysregulation.


Subject(s)
Eating/physiology , Proteome/metabolism , Sleep/physiology , Adult , Circadian Clocks , Circadian Rhythm/physiology , Healthy Volunteers , Humans , Male , Melatonin/metabolism , Plasma/chemistry , Plasma/metabolism , Wakefulness/physiology , Work Schedule Tolerance/physiology
8.
Int J Sports Med ; 42(11): 967-978, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34034354

ABSTRACT

Many adults cite exercise as a primary strategy for losing weight, yet exercise alone is modestly effective for weight loss and results in variable weight loss responses. It is possible that some of the variability in weight loss may be explained by the time of day that exercise is performed. Few studies have directly compared the effects of exercise performed at different times of the day (i. e., morning versus evening exercise). Results from these existing studies are mixed with some studies demonstrating superior weight and fat mass loss from morning exercise, while other studies have found that evening exercise may be better for weight management. Exercise timing may alter modifiable lifestyle behaviors involved in weight management, such as non-exercise physical activity, energy intake, and sleep. The purpose of this review is to summarize evidence for and against time-of-day dependent effects of exercise on weight management. Although limited, we also review studies that have examined the effect of exercise timing on other lifestyle behaviors linked to body weight regulation. While exercise at any time of day is beneficial for health, understanding whether there is an optimal time of day to exercise may advance personalized treatment paradigms for weight management.


Subject(s)
Exercise , Weight Loss , Body Composition , Body Weight , Energy Intake , Humans , Life Style , Sleep , Time Factors
9.
Int J Obes (Lond) ; 44(1): 114-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31289334

ABSTRACT

BACKGROUND/OBJECTIVES: Circadian physiology has been linked to body weight regulation and obesity. To date, few studies have assessed the association between exercise timing and weight related outcomes. The aim of this secondary analysis was to explore the impact of exercise timing (i.e., 24 h clock time of exercise session) on weight loss and components of energy balance. SUBJECTS/METHODS: Overweight/obese (BMI 25.0-39.9 kg/m2), physically inactive, young adults (~51% female) completed a 10-month supervised exercise program (400 or 600 kcal/session for 5 days/week) or served as non-exercise controls (CON). Participants were categorized based on the time of day in which they completed exercise sessions (Early-Ex: >50% of sessions completed between 7:00 and 11:59 am; (n = 21), Late-Ex: >50% of sessions completed between 3:00 and 7:00 pm; (n = 25), Sporadic-Ex: <50% of sessions completed in any time category; (n = 24), and CON; (n = 18)). Body weight, energy intake (EI; digital photography), and non-exercise physical activity (NEPA; accelerometer) were assessed at baseline, 3.5, 7, and 10 months. Total daily energy expenditure (TDEE; doubly labeled water), was assessed at baseline and 10 months. RESULTS: At month 10, weight loss was significantly greater in both Early-EX (-7.2 ± 1.2%; p < 0.001) and Sporadic-EX (- 5.5 ± 1.2%; p = 0.01) vs CON (+0.5 ± 1.0%), and Early-EX vs Late-EX (-2.1 ± 1.0%; p < 0.001). There were no between group differences for change in TDEE, EI, and non-exercise energy expenditure (P > 0.05). A significant group × time interaction (p = 0.02) was observed for NEPA (counts/min), however, after adjusting for multiple comparisons, group effects were no longer significant. CONCLUSIONS: Despite minimal differences in components of energy balance, Early-EX lost significantly more weight compared with Late-Ex. Although the mechanisms are unclear, the timing of exercise may be important for body weight regulation.


Subject(s)
Circadian Clocks/physiology , Energy Metabolism/physiology , Exercise/physiology , Weight Loss/physiology , Adult , Energy Intake/physiology , Female , Humans , Male , Obesity/physiopathology , Obesity/therapy , Randomized Controlled Trials as Topic , Sedentary Behavior , Time Factors , Young Adult
10.
Am J Physiol Endocrinol Metab ; 316(5): E977-E986, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30912962

ABSTRACT

Prevalence of obesity is exacerbated by low rates of successful long-term weight loss maintenance (WLM). In part, relapse from WLM to obesity is due to a reduction in energy expenditure (EE) that persists throughout WLM and relapse. Thus, interventions that increase EE might facilitate WLM. In obese mice that were calorically restricted to reduce body weight by ~20%, we manipulated EE throughout WLM and early relapse using intermittent cold exposure (ICE; 4°C, 90 min/day, 5 days/wk, within the last 3 h of the light cycle). EE, energy intake, and spontaneous physical activity were measured during the obese, WLM, and relapse phases. During WLM and relapse, the ICE group expended more energy during the light cycle because of cold exposure but expended less energy in the dark cycle, which led to no overall difference in total daily EE. The compensation in EE appeared to be mediated by activity, whereby the ICE group was more active during the light cycle because of cold exposure but less active during the dark cycle, which led to no overall effect on total daily activity during WLM and relapse. In brown adipose tissue of relapsing mice, the ICE group had greater mRNA expression of Dio2 and protein expression of UCP1 but lower mRNA expression of Prdm16. In summary, these findings indicate that despite robust increases in EE during cold exposures, ICE is unable to alter total daily EE during WLM or early relapse, likely due to compensatory behaviors in activity.


Subject(s)
Body Weight Maintenance/physiology , Cold Temperature , Energy Intake/physiology , Energy Metabolism/physiology , Motor Activity/physiology , Thermogenesis/physiology , Weight Gain/physiology , Weight Loss/physiology , Adipose Tissue, Brown/metabolism , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Iodide Peroxidase/genetics , Iodide Peroxidase/metabolism , Mice , Obesity , Photoperiod , RNA, Messenger/metabolism , Recurrence , Transcription Factors/genetics , Transcription Factors/metabolism , Uncoupling Protein 1/genetics , Uncoupling Protein 1/metabolism , Iodothyronine Deiodinase Type II
11.
Am J Physiol Endocrinol Metab ; 314(2): E124-E130, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28978547

ABSTRACT

When the doubly labeled water (DLW) method is used to measure total daily energy expenditure (TDEE), isotope measurements are typically performed using isotope ratio mass spectrometry (IRMS). New technologies, such as off-axis integrated cavity output spectroscopy (OA-ICOS) provide comparable isotopic measurements of standard waters and human urine samples, but the accuracy of carbon dioxide production (V̇co2) determined with OA-ICOS has not been demonstrated. We compared simultaneous measurement V̇co2 obtained using whole-room indirect calorimetry (IC) with DLW-based measurements from IRMS and OA-ICOS. Seventeen subjects (10 female; 22 to 63 yr) were studied for 7 consecutive days in the IC. Subjects consumed a dose of 0.25 g H218O (98% APE) and 0.14 g 2H2O (99.8% APE) per kilogram of total body water, and urine samples were obtained on days 1 and 8 to measure average daily V̇co2 using OA-ICOS and IRMS. V̇co2 was calculated using both the plateau and intercept methods. There were no differences in V̇co2 measured by OA-ICOS or IRMS compared with IC when the plateau method was used. When the intercept method was used, V̇co2 using OA-ICOS did not differ from IC, but V̇co2 measured using IRMS was significantly lower than IC. Accuracy (~1-5%), precision (~8%), intraclass correlation coefficients ( R = 0.87-90), and root mean squared error (30-40 liters/day) of V̇co2 measured by OA-ICOS and IRMS were similar. Both OA-ICOS and IRMS produced measurements of V̇co2 with comparable accuracy and precision compared with IC.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Oxygen Isotopes/chemistry , Pulmonary Gas Exchange , Water/chemistry , Adult , Calorimetry, Indirect/methods , Deuterium/chemistry , Deuterium/urine , Energy Metabolism , Exercise Test , Female , Humans , Male , Middle Aged , Oxygen Isotopes/urine , Pulmonary Gas Exchange/physiology , Spectrum Analysis/methods , Young Adult
12.
Exerc Sport Sci Rev ; 46(4): 232-239, 2018 10.
Article in English | MEDLINE | ID: mdl-30001272

ABSTRACT

Reducing estrogen in women results in decreases in energy expenditure, but the mechanism(s) remain largely unknown. We postulate that the loss of estrogens in women is associated with increased accumulation of bone marrow-derived adipocytes in white adipose tissue, decreased activity of brown adipose tissue, and reduced levels of physical activity. Regular exercise may counteract the effects of estrogen deficiency.


Subject(s)
Adipose Tissue, Brown/physiology , Adipose Tissue, White/physiology , Energy Metabolism , Estrogens/deficiency , Exercise , Adipocytes/physiology , Animals , Female , Humans , Menopause
13.
Proc Natl Acad Sci U S A ; 111(48): 17302-7, 2014 Dec 02.
Article in English | MEDLINE | ID: mdl-25404342

ABSTRACT

Eating at a time when the internal circadian clock promotes sleep is a novel risk factor for weight gain and obesity, yet little is known about mechanisms by which circadian misalignment leads to metabolic dysregulation in humans. We studied 14 adults in a 6-d inpatient simulated shiftwork protocol and quantified changes in energy expenditure, macronutrient utilization, appetitive hormones, sleep, and circadian phase during day versus nightshift work. We found that total daily energy expenditure increased by ∼4% on the transition day to the first nightshift, which consisted of an afternoon nap and extended wakefulness, whereas total daily energy expenditure decreased by ∼3% on each of the second and third nightshift days, which consisted of daytime sleep followed by afternoon and nighttime wakefulness. Contrary to expectations, energy expenditure decreased by ∼12-16% during scheduled daytime sleep opportunities despite disturbed sleep. The thermic effect of feeding also decreased in response to a late dinner on the first nightshift. Total daily fat utilization increased on the first and second nightshift days, contrary to expectations, and carbohydrate and protein utilization were reduced on the second nightshift day. Ratings of hunger were decreased during nightshift days despite decreases in 24-h levels of the satiety hormones leptin and peptide-YY. Findings suggest that reduced total daily energy expenditure during nightshift schedules and reduced energy expenditure in response to dinner represent contributing mechanisms by which humans working and eating during the biological night, when the circadian clock is promoting sleep, may increase the risk of weight gain and obesity.


Subject(s)
Circadian Rhythm/physiology , Energy Metabolism/physiology , Sleep Stages/physiology , Work Schedule Tolerance/physiology , Adult , Analysis of Variance , Eating/physiology , Electromyography , Female , Ghrelin/blood , Humans , Leptin/blood , Male , Melatonin/metabolism , Obesity/blood , Obesity/metabolism , Obesity/physiopathology , Peptide YY/blood , Risk Factors , Sleep/physiology , Sleep Deprivation/physiopathology , Time Factors , Wakefulness/physiology , Weight Gain/physiology
14.
Proc Natl Acad Sci U S A ; 110(14): 5695-700, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23479616

ABSTRACT

Insufficient sleep is associated with obesity, yet little is known about how repeated nights of insufficient sleep influence energy expenditure and balance. We studied 16 adults in a 14- to 15-d-long inpatient study and quantified effects of 5 d of insufficient sleep, equivalent to a work week, on energy expenditure and energy intake compared with adequate sleep. We found that insufficient sleep increased total daily energy expenditure by ∼5%; however, energy intake--especially at night after dinner--was in excess of energy needed to maintain energy balance. Insufficient sleep led to 0.82 ± 0.47 kg (±SD) weight gain despite changes in hunger and satiety hormones ghrelin and leptin, and peptide YY, which signaled excess energy stores. Insufficient sleep delayed circadian melatonin phase and also led to an earlier circadian phase of wake time. Sex differences showed women, not men, maintained weight during adequate sleep, whereas insufficient sleep reduced dietary restraint and led to weight gain in women. Our findings suggest that increased food intake during insufficient sleep is a physiological adaptation to provide energy needed to sustain additional wakefulness; yet when food is easily accessible, intake surpasses that needed. We also found that transitioning from an insufficient to adequate/recovery sleep schedule decreased energy intake, especially of fats and carbohydrates, and led to -0.03 ± 0.50 kg weight loss. These findings provide evidence that sleep plays a key role in energy metabolism. Importantly, they demonstrate physiological and behavioral mechanisms by which insufficient sleep may contribute to overweight and obesity.


Subject(s)
Eating/physiology , Energy Metabolism/physiology , Sleep Deprivation/physiopathology , Weight Gain/physiology , Adult , Analysis of Variance , Calorimetry , Circadian Rhythm/physiology , Female , Humans , Male , Oxygen Consumption/physiology
15.
Appetite ; 85: 14-21, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25447016

ABSTRACT

Current, validated methods for dietary assessment rely on self-report, which tends to be inaccurate, time-consuming, and burdensome. The objective of this work was to demonstrate the suitability of estimating energy intake using individually-calibrated models based on Counts of Chews and Swallows (CCS models). In a laboratory setting, subjects consumed three identical meals (training meals) and a fourth meal with different content (validation meal). Energy intake was estimated by four different methods: weighed food records (gold standard), diet diaries, photographic food records, and CCS models. Counts of chews and swallows were measured using wearable sensors and video analysis. Results for the training meals demonstrated that CCS models presented the lowest reporting bias and a lower error as compared to diet diaries. For the validation meal, CCS models showed reporting errors that were not different from the diary or the photographic method. The increase in error for the validation meal may be attributed to differences in the physical properties of foods consumed during training and validation meals. However, this may be potentially compensated for by including correction factors into the models. This study suggests that estimation of energy intake from CCS may offer a promising alternative to overcome limitations of self-report.


Subject(s)
Deglutition/physiology , Energy Intake , Mastication/physiology , Adult , Animals , Body Mass Index , Diet , Diet Records , Eating/physiology , Female , Humans , Male , Meals , Middle Aged , Young Adult
16.
Muscle Nerve ; 49(6): 887-94, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24037802

ABSTRACT

INTRODUCTION: We compared fatigability and activation of elbow flexor muscles in children at 3 pubertal stages during a sustained submaximal contraction. METHODS: In 72 healthy children (39 boys) aged 11 ± 3 years (range, 8-14 years), differences in fatigability (time to task failure) and muscle activation were compared at 3 Tanner stages (T1-T3). RESULTS: Time to task failure and muscle activation were similar between boys and girls at prepubertal Tanner stage 1. Time to task failure was briefer for girls than boys at Tanner stages 2 and 3 and was predicted by the coactivation indices and percent body fat in girls. Muscle torque was the only predictor for the time to task failure in boys. CONCLUSIONS: Differences in fatigability and muscle coactivation were evident during the initial pubertal stages (T2 and T3), but not before the onset of puberty (T1).


Subject(s)
Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Puberty/physiology , Sex Factors , Task Performance and Analysis , Adolescent , Biomechanical Phenomena , Body Composition/physiology , Child , Cross-Sectional Studies , Electromyography , Female , Humans , Male , Muscle Contraction/physiology , Time Factors
17.
J Appl Physiol (1985) ; 137(1): 1-9, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38695352

ABSTRACT

We tested whether spontaneous physical activity (SPA) from accelerometers could be used in a whole room calorimeter to estimate thermic effect of food (TEF). Eleven healthy participants (n = 7 females; age: 27 ± 4 yr; body mass index: 22.8 ± 2.6 kg/m2) completed two 23-h visits in randomized order: one "fed" with meals provided and one "fasted" with no food. SPA was measured by ActivPAL and Actigraph accelerometers. Criterion TEF was calculated as the difference in total daily energy expenditure (TDEE) between fed and fasted visits and compared with three methods of estimating TEF: 1) SPA-adjusted TEF (adjTEF)-difference in TDEE without SPA between visits, 2) Wakeful TEF-difference in energy expenditure obtained from linear regression and basal metabolic rate during waking hours, 3) 24-h TEF-increase in TDEE above SPA and sleeping metabolic rate. Criterion TEF was 9.4 ± 4.5% of TDEE. AdjTEF (difference in estimated vs. criterion TEF: activPAL: -0.3 ± 3.3%; Actigraph: -1.8 ± 8.0%) and wakeful TEF (activPAL: -0.9 ± 6.1%; Actigraph: -2.8 ± 7.6%) derived from both accelerometers did not differ from criterion TEF (all P > 0.05). ActivPAL-derived 24-h TEF overestimated TEF (6.8 ± 5.4%, P = 0.002), whereas Actigraph-derived 24-h TEF was not significantly different (4.3 ± 9.4%, P = 0.156). TEF estimations using activPAL tended to show better individual-level agreement (i.e., smaller coefficients of variation). Both accelerometers can be used to estimate TEF in a whole room calorimeter; wakeful TEF using activPAL is the most viable option given strong group-level accuracy and reasonable individual agreement.NEW & NOTEWORTHY Two research-grade accelerometers can effectively estimate spontaneous physical activity and improve the estimation of thermic effect of food (TEF) in whole room calorimeters. The activPAL demonstrates strong group-level accuracy and reasonable individual-level agreement in estimating wakeful TEF, whereas a hip-worn Actigraph is an acceptable approach for estimating 24-h TEF. These results highlight the promising potential of accelerometers in advancing energy balance research by improving the assessment of TEF within whole room calorimeters.


Subject(s)
Accelerometry , Energy Metabolism , Exercise , Humans , Female , Adult , Male , Accelerometry/methods , Accelerometry/instrumentation , Energy Metabolism/physiology , Exercise/physiology , Calorimetry/methods , Young Adult , Fasting/physiology , Calorimetry, Indirect/methods , Basal Metabolism/physiology , Food
18.
J Parkinsons Dis ; 14(1): 121-133, 2024.
Article in English | MEDLINE | ID: mdl-38189712

ABSTRACT

BACKGROUND: An attenuated heart rate response to exercise, termed chronotropic incompetence, has been reported in Parkinson's disease (PD). Chronotropic incompetence may be a marker of autonomic dysfunction and a cause of exercise intolerance in early stages of PD. OBJECTIVE: To investigate the relationship between chronotropic incompetence, orthostatic blood pressure change (supine - standing), and exercise performance (maximal oxygen consumption, VO2peak) in individuals with early PD within 5 years of diagnosis not on dopaminergic medications. METHODS: We performed secondary analyses of heart rate and blood pressure data from the Study in Parkinson's Disease of Exercise (SPARX). RESULTS: 128 individuals were enrolled into SPARX (63.7±9.3 years; 57.0% male, 0.4 years since diagnosis [median]). 103 individuals were not taking chronotropic medications, of which 90 had a normal maximal heart rate response to exercise testing (155.3±14.0 bpm; PDnon-chrono) and 13 showed evidence of chronotropic incompetence (121.3±11.3 bpm; PDchrono, p < 0.05). PDchrono had decreased VO2peak compared to PDnon-chrono (19.7±4.5 mL/kg/min and 24.3±5.8 mL/kg/min, respectively, p = 0.027). There was a positive correlation between peak heart rate during exercise and the change in systolic blood pressure from supine to standing (r = 0.365, p < 0.001). CONCLUSIONS: A subgroup of individuals with early PD not on dopaminergic medication had chronotropic incompetence and decreased VO2peak, which may be related to autonomic dysfunction. Evaluation of both heart rate responses to incremental exercise and orthostatic vital signs may serve as biomarkers of early autonomic impairment and guide treatment. Further studies should investigate whether cardiovascular autonomic dysfunction affects the ability to exercise and whether exercise training improves autonomic dysfunction.


Subject(s)
Autonomic Nervous System Diseases , Heart Failure , Parkinson Disease , Humans , Male , Female , Exercise Test , Parkinson Disease/complications , Autonomic Nervous System Diseases/diagnosis , Autonomic Nervous System Diseases/etiology , Heart Rate/physiology
19.
Sleep Health ; 10(1S): S76-S83, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37777359

ABSTRACT

OBJECTIVES: Dim light melatonin onset, or the rise in melatonin levels representing the beginning of the biological night, is the gold standard indicator of circadian phase. Considerably less is known about dim light melatonin offset, or the decrease in melatonin to low daytime levels representing the end of the biological night. In the context of insufficient sleep, morning circadian misalignment, or energy intake after waketime but before dim light melatonin offset, is linked to impaired insulin sensitivity, suggesting the need to characterize dim light melatonin offset and identify risk for morning circadian misalignment. METHODS: We examined the distributions of dim light melatonin offset clock hour and the phase relationship between dim light melatonin offset and waketime, and associations between dim light melatonin offset, phase relationship, and chronotype in healthy adults (N = 62) who completed baseline protocols measuring components of the circadian melatonin rhythm and chronotype. RESULTS: 74.4% demonstrated dim light melatonin offset after waketime, indicating most healthy adults wake up before the end of biological night. Later chronotype (morningness-eveningness, mid-sleep on free days corrected, and average mid-sleep) was associated with later dim light melatonin offset clock hour. Later chronotype was also associated with a larger, positive phase relationship between dim light melatonin offset and waketime, except for morningness-eveningness. CONCLUSIONS: These findings suggest morning circadian misalignment risk among healthy adults, which would not be detected if only dim light melatonin onset were assessed. Chronotype measured by sleep timing may better predict this risk in healthy adults keeping a consistent sleep schedule than morningness-eveningness preferences. Additional research is needed to develop circadian biomarkers to predict dim light melatonin offset and evaluate appropriate dim light melatonin offset timing to promote health.

20.
J Pediatr ; 163(2): 349-54, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23415611

ABSTRACT

OBJECTIVE: To compare the associations between neuromuscular performance and anthropometric characteristics with habitual levels of physical activity in boys and girls during the initial stages of puberty. STUDY DESIGN: In a cross-sectional study of 72 healthy children (39 boys and 33 girls) ranging in age from 8 to 14 years, sex differences in anthropometric and motor performance characteristics were compared at 3 Tanner stages (T1-T3). Outcome variables included dual-energy x-ray absorptiometry measurements of body composition, assessments of neuromuscular function, and levels of physical activity (steps/day) measured by accelerometry. RESULTS: Physical activity was lower in girls than boys at T2 and T3, but there was no sex difference at T1. Physical activity increased with Tanner stage for boys but did not differ between Tanner stages in girls. Physical activity at each Tanner stage was strongly associated (R(2) > 0.85) with neuromuscular characteristics for both boys and girls, but percentage of body fat also was associated with physical activity for T3 girls. CONCLUSIONS: The attenuated gains in neuromuscular function experienced by girls in early stages of puberty were strongly associated with lower levels of physical activity, whereas the increase in physical activity exhibited by boys was mostly related to increases in the strength and endurance of leg muscles. Because sedentary activity is a known contributor to the development of obesity and type 2 diabetes in youth, this study helps to identify possible contributors to decreases in physical activity in young girls and provides potential targets for early intervention.


Subject(s)
Muscle, Skeletal/physiology , Nervous System Physiological Phenomena , Physical Fitness/physiology , Puberty/physiology , Child , Cross-Sectional Studies , Female , Humans , Male , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL