Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 12(9): e1005859, 2016 09.
Article in English | MEDLINE | ID: mdl-27611367

ABSTRACT

Human metapneumovirus (hMPV) is a paramyxovirus that is a common cause of bronchiolitis and pneumonia in children less than five years of age. The hMPV fusion (F) glycoprotein is the primary target of neutralizing antibodies and is thus a critical vaccine antigen. To facilitate structure-based vaccine design, we stabilized the ectodomain of the hMPV F protein in the postfusion conformation and determined its structure to a resolution of 3.3 Å by X-ray crystallography. The structure resembles an elongated cone and is very similar to the postfusion F protein from the related human respiratory syncytial virus (hRSV). In contrast, significant differences were apparent with the postfusion F proteins from other paramyxoviruses, such as human parainfluenza type 3 (hPIV3) and Newcastle disease virus (NDV). The high similarity of hMPV and hRSV postfusion F in two antigenic sites targeted by neutralizing antibodies prompted us to test for antibody cross-reactivity. The widely used monoclonal antibody 101F, which binds to antigenic site IV of hRSV F, was found to cross-react with hMPV postfusion F and neutralize both hRSV and hMPV. Despite the cross-reactivity of 101F and the reported cross-reactivity of two other antibodies, 54G10 and MPE8, we found no detectable cross-reactivity in the polyclonal antibody responses raised in mice against the postfusion forms of either hMPV or hRSV F. The postfusion-stabilized hMPV F protein did, however, elicit high titers of hMPV-neutralizing activity, suggesting that it could serve as an effective subunit vaccine. Structural insights from these studies should be useful for designing novel immunogens able to induce wider cross-reactive antibody responses.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Metapneumovirus/immunology , Viral Fusion Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigens, Viral/chemistry , Antigens, Viral/genetics , Cross Reactions , Crystallography, X-Ray , Female , Genetic Engineering , Humans , Metapneumovirus/genetics , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Conformation , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Sequence Alignment , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics
2.
J Virol ; 90(7): 3428-38, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26763998

ABSTRACT

UNLABELLED: Human respiratory syncytial virus (RSV), for which neither a vaccine nor an effective therapeutic treatment is currently available, is the leading cause of severe lower respiratory tract infections in children. Interferon-stimulated gene 15 (ISG15) is a ubiquitin-like protein that is highly increased during viral infections and has been reported to have an antiviral or a proviral activity, depending on the virus. Previous studies from our laboratory demonstrated strong ISG15 upregulation during RSV infection in vitro. In this study, an in-depth analysis of the role of ISG15 in RSV infection is presented. ISG15 overexpression and small interfering RNA (siRNA)-silencing experiments, along with ISG15 knockout (ISG15(-/-)) cells, revealed an anti-RSV effect of the molecule. Conjugation inhibition assays demonstrated that ISG15 exerts its antiviral activity via protein ISGylation. This antiviral activity requires high levels of ISG15 to be present in the cells before RSV infection. Finally, ISG15 is also upregulated in human respiratory pseudostratified epithelia and in nasopharyngeal washes from infants infected with RSV, pointing to a possible antiviral role of the molecule in vivo. These results advance our understanding of the innate immune response elicited by RSV and open new possibilities to control infections by the virus. IMPORTANCE: At present, no vaccine or effective treatment for human respiratory syncytial virus (RSV) is available. This study shows that interferon-stimulated gene 15 (ISG15) lowers RSV growth through protein ISGylation. In addition, ISG15 accumulation highly correlates with the RSV load in nasopharyngeal washes from children, indicating that ISG15 may also have an antiviral role in vivo. These results improve our understanding of the innate immune response to RSV and identify ISG15 as a potential target for virus control.


Subject(s)
Cytokines/metabolism , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/metabolism , Respiratory Tract Infections/immunology , Ubiquitins/metabolism , Cell Line, Tumor , Cytokines/genetics , Endopeptidases/genetics , Epithelial Cells/metabolism , Epithelial Cells/virology , HeLa Cells , Humans , Immunity, Innate , Infant , Protein Processing, Post-Translational , RNA Interference , RNA, Small Interfering/genetics , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Respiratory Tract Infections/virology , Ubiquitin Thiolesterase , Ubiquitin-Activating Enzymes/genetics , Ubiquitins/genetics
3.
J Virol ; 90(11): 5485-5498, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27009962

ABSTRACT

UNLABELLED: Human respiratory syncytial virus (hRSV) vaccine development has received new impetus from structure-based studies of its main protective antigen, the fusion (F) glycoprotein. Three soluble forms of F have been described: monomeric, trimeric prefusion, and trimeric postfusion. Most human neutralizing antibodies recognize epitopes found exclusively in prefusion F. Although prefusion F induces higher levels of neutralizing antibodies than does postfusion F, postfusion F can also induce protection against virus challenge in animals. However, the immunogenicity and protective efficacy of the three forms of F have not hitherto been directly compared. Hence, BALB/c mice were immunized with a single dose of the three proteins adjuvanted with CpG and challenged 4 weeks later with virus. Serum antibodies, lung virus titers, weight loss, and pulmonary pathology were evaluated after challenge. Whereas small amounts of postfusion F were sufficient to protect mice, larger amounts of monomeric and prefusion F proteins were required for protection. However, postfusion and monomeric F proteins were associated with more pathology after challenge than was prefusion F. Antibodies induced by all doses of prefusion F, in contrast to other F protein forms, reacted predominantly with the prefusion F conformation. At high doses, prefusion F also induced the highest titers of neutralizing antibodies, and all mice were protected, yet at low doses of the immunogen, these antibodies neutralized virus poorly, and mice were not protected. These findings should be considered when developing new hRSV vaccine candidates. IMPORTANCE: Protection against hRSV infection is afforded mainly by neutralizing antibodies, which recognize mostly epitopes found exclusively in the viral fusion (F) glycoprotein trimer, folded in its prefusion conformation, i.e., before activation for membrane fusion. Although prefusion F is able to induce high levels of neutralizing antibodies, highly stable postfusion F (found after membrane fusion) is also able to induce neutralizing antibodies and protect against infection. In addition, a monomeric form of hRSV F that shares epitopes with prefusion F was recently reported. Since each of the indicated forms of hRSV F may have advantages and disadvantages for the development of safe and efficacious subunit vaccines, a direct comparison of the immunogenic properties and protective efficacies of the different forms of hRSV F was made in a mouse model. The results obtained show important differences between the noted immunogens that should be borne in mind when considering the development of hRSV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Viruses/chemistry , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/immunology , Adjuvants, Immunologic , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Dose-Response Relationship, Immunologic , Epitopes/immunology , Female , Humans , Immunization , Immunogenicity, Vaccine , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Oligodeoxyribonucleotides/immunology , Protein Conformation , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/isolation & purification , Viral Fusion Proteins/administration & dosage
4.
PLoS Pathog ; 11(7): e1005035, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26161532

ABSTRACT

Prevention efforts for respiratory syncytial virus (RSV) have been advanced due to the recent isolation and characterization of antibodies that specifically recognize the prefusion conformation of the RSV fusion (F) glycoprotein. These potently neutralizing antibodies are in clinical development for passive prophylaxis and have also aided the design of vaccine antigens that display prefusion-specific epitopes. To date, prefusion-specific antibodies have been shown to target two antigenic sites on RSV F, but both of these sites are also present on monomeric forms of F. Here we present a structural and functional characterization of human antibody AM14, which potently neutralized laboratory strains and clinical isolates of RSV from both A and B subtypes. The crystal structure and location of escape mutations revealed that AM14 recognizes a quaternary epitope that spans two protomers and includes a region that undergoes extensive conformational changes in the pre- to postfusion F transition. Binding assays demonstrated that AM14 is unique in its specific recognition of trimeric furin-cleaved prefusion F, which is the mature form of F on infectious virions. These results demonstrate that the prefusion F trimer contains potent neutralizing epitopes not present on monomers and that AM14 should be particularly useful for characterizing the conformational state of RSV F-based vaccine antigens.


Subject(s)
Antibodies, Neutralizing/ultrastructure , Antibodies, Viral/ultrastructure , Epitopes, B-Lymphocyte/ultrastructure , Respiratory Syncytial Viruses/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigens, Viral/immunology , Cell Line , Chromatography, Gel , Crystallography, X-Ray , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Flow Cytometry , Glycoproteins/chemistry , Glycoproteins/immunology , Glycoproteins/ultrastructure , Humans , Protein Structure, Quaternary , Surface Plasmon Resonance
5.
Antimicrob Agents Chemother ; 60(11): 6498-6509, 2016 11.
Article in English | MEDLINE | ID: mdl-27550346

ABSTRACT

ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Viral/pharmacology , Antigens, Viral/immunology , Respiratory Syncytial Virus, Human/drug effects , Single-Domain Antibodies/pharmacology , Viral Fusion Proteins/antagonists & inhibitors , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antigens, Viral/chemistry , Antigens, Viral/genetics , Camelids, New World , Cell Line, Tumor , Epithelial Cells/virology , Epitopes/chemistry , Epitopes/immunology , Humans , Immune Evasion/genetics , Immune Sera/chemistry , Models, Molecular , Mutation , Neutralization Tests , Protein Binding , Protein Structure, Secondary , Respiratory Syncytial Virus, Human/genetics , Respiratory Syncytial Virus, Human/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/isolation & purification , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology
6.
Antimicrob Agents Chemother ; 60(1): 6-13, 2016 01.
Article in English | MEDLINE | ID: mdl-26438495

ABSTRACT

Respiratory syncytial virus (RSV) is an important causative agent of lower respiratory tract infections in infants and elderly individuals. Its fusion (F) protein is critical for virus infection. It is targeted by several investigational antivirals and by palivizumab, a humanized monoclonal antibody used prophylactically in infants considered at high risk of severe RSV disease. ALX-0171 is a trimeric Nanobody that binds the antigenic site II of RSV F protein with subnanomolar affinity. ALX-0171 demonstrated in vitro neutralization superior to that of palivizumab against prototypic RSV subtype A and B strains. Moreover, ALX-0171 completely blocked replication to below the limit of detection for 87% of the viruses tested, whereas palivizumab did so for 18% of the viruses tested at a fixed concentration. Importantly, ALX-0171 was highly effective in reducing both nasal and lung RSV titers when delivered prophylactically or therapeutically directly to the lungs of cotton rats. ALX-0171 represents a potent novel antiviral compound with significant potential to treat RSV-mediated disease.


Subject(s)
Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Viruses/drug effects , Single-Domain Antibodies/pharmacology , Viral Fusion Proteins/antagonists & inhibitors , Administration, Inhalation , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Antiviral Agents/immunology , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Female , Gene Expression , Humans , Lung/drug effects , Lung/immunology , Lung/virology , Male , Models, Molecular , Nasal Cavity/drug effects , Nasal Cavity/immunology , Nasal Cavity/virology , Neutralization Tests , Palivizumab/biosynthesis , Palivizumab/immunology , Palivizumab/pharmacology , Pichia/genetics , Pichia/metabolism , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Viruses/immunology , Respiratory Syncytial Viruses/pathogenicity , Sigmodontinae , Single-Domain Antibodies/biosynthesis , Single-Domain Antibodies/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/genetics , Viral Fusion Proteins/immunology , Viral Load/drug effects , Virus Replication/drug effects
7.
J Virol ; 89(15): 7776-85, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25995258

ABSTRACT

UNLABELLED: Worldwide G-glycoprotein phylogeny of human respiratory syncytial virus (hRSV) group A sequences revealed diversification in major clades and genotypes over more than 50 years of recorded history. Multiple genotypes cocirculated during prolonged periods of time, but recent dominance of the GA2 genotype was noticed in several studies, and it is highlighted here with sequences from viruses circulating recently in Spain and Panama. Reactivity of group A viruses with monoclonal antibodies (MAbs) that recognize strain-variable epitopes of the G glycoprotein failed to correlate genotype diversification with antibody reactivity. Additionally, no clear correlation was found between changes in strain-variable epitopes and predicted sites of positive selection, despite both traits being associated with the C-terminal third of the G glycoprotein. Hence, our data do not lend support to the proposed antibody-driven selection of variants as a major determinant of hRSV evolution. Other alternative mechanisms are considered to account for the high degree of hRSV G-protein variability. IMPORTANCE: An unusual characteristic of the G glycoprotein of human respiratory syncytial virus (hRSV) is the accumulation of nonsynonymous (N) changes at higher rates than synonymous (S) changes, reaching dN/dS values at certain sites predictive of positive selection. Since these sites cluster preferentially in the C-terminal third of the G protein, like certain epitopes recognized by murine antibodies, it was proposed that immune (antibody) selection might be driving the apparent positive selection, analogous to the antigenic drift observed in the influenza virus hemagglutinin (HA). However, careful antigenic and genetic comparison of the G glycoprotein does not provide evidence of antigenic drift in the G molecule, in agreement with recently published data which did not indicate antigenic drift in the G protein with human sera. Alternative explanations to the immune-driven selection hypothesis are offered to account for the high level of G-protein genetic diversity highlighted in this study.


Subject(s)
Antibodies, Monoclonal/immunology , Epitopes/genetics , Evolution, Molecular , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/genetics , Viral Envelope Proteins/genetics , Amino Acid Sequence , Antibodies, Viral/immunology , Antigenic Variation , Conserved Sequence , Epitopes/chemistry , Epitopes/immunology , Genetic Variation , Humans , Molecular Sequence Data , Phylogeny , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/immunology , Sequence Alignment , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
8.
J Virol ; 88(20): 11802-10, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25078705

ABSTRACT

Respiratory syncytial virus (RSV) is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. There remains an unmet vaccine need despite decades of research. Insufficient potency, homogeneity, and stability of previous RSV fusion protein (F) subunit vaccine candidates have hampered vaccine development. RSV F and related parainfluenza virus (PIV) F proteins are cleaved by furin during intracellular maturation, producing disulfide-linked F1 and F2 fragments. During cell entry, the cleaved Fs rearrange from prefusion trimers to postfusion trimers. Using RSV F constructs with mutated furin cleavage sites, we isolated an uncleaved RSV F ectodomain that is predominantly monomeric and requires specific cleavage between F1 and F2 for self-association and rearrangement into stable postfusion trimers. The uncleaved RSV F monomer is folded and homogenous and displays at least two key RSV-neutralizing epitopes shared between the prefusion and postfusion conformations. Unlike the cleaved trimer, the uncleaved monomer binds the prefusion-specific monoclonal antibody D25 and human neutralizing immunoglobulins that do not bind to postfusion F. These observations suggest that the uncleaved RSV F monomer has a prefusion-like conformation and is a potential prefusion subunit vaccine candidate. Importance: RSV is the leading infectious cause of severe respiratory disease in infants and a major cause of respiratory illness in the elderly. Development of an RSV vaccine was stymied when a clinical trial using a formalin-inactivated RSV virus made disease, following RSV infection, more severe. Recent studies have defined the structures that the RSV F envelope glycoprotein adopts before and after virus entry (prefusion and postfusion conformations, respectively). Key neutralization epitopes of prefusion and postfusion RSV F have been identified, and a number of current vaccine development efforts are focused on generating easily produced subunit antigens that retain these epitopes. Here we show that a simple modification in the F ectodomain results in a homogeneous protein that retains critical prefusion neutralizing epitopes. These results improve our understanding of RSV F protein folding and structure and can guide further vaccine design efforts.


Subject(s)
Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , Epitopes/immunology , Respiratory Syncytial Viruses/immunology , Humans , Proteolysis
9.
Virol J ; 12: 48, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25888921

ABSTRACT

BACKGROUND: The majority of pandemic 2009 H1N1 (A(H1N1)pdm09) influenza virus (IV) caused mild symptoms in most infected patients, however, a greater rate of severe disease was observed in healthy young adults and children without co-morbid conditions. The purpose of this work was to study in ferrets the dynamics of infection of two contemporary strains of human A(H1N1)pdm09 IV, one isolated from a patient showing mild disease and the other one from a fatal case. METHODS: Viral strains isolated from a patient showing mild disease-M (A/CastillaLaMancha/RR5661/2009) or from a fatal case-F (A/CastillaLaMancha/RR5911/2009), both without known comorbid conditions, were inoculated in two groups of ferrets and clinical and pathological conditions were analysed. RESULTS: Mild to severe clinical symptoms were observed in animals from both groups. A clinical score distribution was applied in which ferrets with mild clinical signs were distributed on a non-severe group (NS) and ferrets with severe clinical signs on a severe group (S), regardless of the virus used in the infection. Animals on S showed a significant decrease in body weight compared to animals on NS at 4 to 7 days post-infection (dpi). Clinical progress correlated with histopathological findings. Concentrations of haptoglobin (Hp) and serum amyloid A (SAA) increased on both groups after 2 dpi. Clinically severe infected ferrets showed a stronger antibody response and higher viral titres after infection (p = 0.001). CONCLUSIONS: The severity in the progress of infection was independent from the virus used for infection suggesting that the host immune response was determinant in the outcome of the infection. The diversity observed in ferrets mimicked the variability found in the human population.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/virology , Adult , Animals , Antibodies, Viral/blood , Disease Models, Animal , Female , Ferrets/virology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/blood , Influenza, Human/pathology , Lung/pathology , Lung/virology , Male , Young Adult
10.
Proc Natl Acad Sci U S A ; 109(8): 3089-94, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22323598

ABSTRACT

Human respiratory syncytial virus (hRSV) is the most important viral agent of pediatric respiratory infections worldwide. The only specific treatment available today is a humanized monoclonal antibody (Palivizumab) directed against the F glycoprotein, administered prophylactically to children at very high risk of severe hRSV infections. Palivizumab, as most anti-F antibodies so far described, recognizes an epitope that is shared by the two conformations in which hRSV_F can fold, the metastable prefusion form and the highly stable postfusion conformation. We now describe a unique class of antibodies specific for the prefusion form of this protein that account for most of the neutralizing activity of either a rabbit serum raised against a vaccinia virus recombinant expressing hRSV_F or a human Ig preparation (Respigam), which was used for prophylaxis before Palivizumab. These antibodies therefore offer unique possibilities for immune intervention against hRSV, and their production should be assessed in trials of hRSV vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Respiratory Syncytial Virus Infections/therapy , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/immunology , Amino Acid Sequence , Animals , Humans , Immunization , Molecular Sequence Data , Protein Stability , Rabbits , Recombinant Proteins/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Vaccinia virus/immunology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL