Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Br J Cancer ; 120(3): 356-367, 2019 02.
Article in English | MEDLINE | ID: mdl-30655616

ABSTRACT

BACKGROUND: Metabolic changes in tumour cells are used in clinical imaging and may provide potential therapeutic targets. Human papillomavirus (HPV) status is important in classifying head and neck cancers (HNSCC), identifying a distinct clinical phenotype; metabolic differences between these HNSCC subtypes remain poorly understood. METHODS: We used RNA sequencing to classify the metabolic expression profiles of HPV+ve and HPV-ve HNSCC, performed a meta-analysis on FDG-PET imaging characteristics and correlated results with in vitro extracellular flux analysis of HPV-ve and HPV+ve HNSCC cell lines. The monocarboxylic acid transporter-1 (MCT1) was identified as a potential metabolic target and tested in functional assays. RESULTS: Specific metabolic profiles were associated with HPV status, not limited to carbohydrate metabolism. There was dominance of all energy pathways in HPV-negative disease, with elevated expression of genes associated with glycolysis and oxidative phosphorylation. In vitro analysis confirmed comparative increased rates of oxidative phosphorylation and glycolysis in HPV-negative cell lines. PET SUV(max) scores however were unable to reliably differentiate between HPV-positive and HPV-negative tumours. MCT1 expression was significantly increased in HPV-negative tumours, and inhibition suppressed tumour cell invasion, colony formation and promoted radiosensitivity. CONCLUSION: HPV-positive and negative HNSCC have different metabolic profiles which may have potential therapeutic applications.


Subject(s)
Monocarboxylic Acid Transporters/genetics , Papillomaviridae/pathogenicity , Papillomavirus Infections/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Symporters/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Glycolysis/genetics , Humans , Monocarboxylic Acid Transporters/isolation & purification , Monocarboxylic Acid Transporters/metabolism , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Oxidative Phosphorylation , Papillomaviridae/genetics , Papillomaviridae/metabolism , Papillomavirus Infections/diagnostic imaging , Papillomavirus Infections/pathology , Papillomavirus Infections/virology , Positron-Emission Tomography , Radiation Tolerance , Sequence Analysis, RNA , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/virology , Symporters/isolation & purification , Symporters/metabolism
2.
Carcinogenesis ; 39(6): 798-807, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29506142

ABSTRACT

The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-ß1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-ß1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-ß signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-ß1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , MicroRNAs/metabolism , Mouth Neoplasms/metabolism , Transforming Growth Factor beta1/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Humans , Myofibroblasts/metabolism , Phenotype , Signal Transduction/physiology , Tumor Microenvironment/physiology
3.
Br J Cancer ; 118(9): 1200-1207, 2018 05.
Article in English | MEDLINE | ID: mdl-29593339

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) form the major stromal component of the tumour microenvironment (TME). The present study aimed to examine the proteomic profiles of CAFs vs. normal fibroblasts (NOFs) from patients with oesophageal adenocarcinoma to gain insight into their pro-oncogenic phenotype. METHODS: CAFs/NOFs from four patients were sub-cultured and analysed using quantitative proteomics. Differentially expressed proteins (DEPs) were subjected to bioinformatics and compared with published proteomics and transcriptomics  datasets. RESULTS: Principal component analysis of all profiled proteins showed that CAFs had high heterogeneity and clustered separately from NOFs. Bioinformatics interrogation of the DEPs demonstrated inhibition of adhesion of epithelial cells, adhesion of connective tissue cells and cell death of fibroblast cell lines in CAFs vs. NOFs (p < 0.0001). KEGG pathway analysis showed a significant enrichment of the insulin-signalling pathway (p = 0.03). Gene ontology terms related with myofibroblast phenotype, metabolism, cell adhesion/migration, hypoxia/oxidative stress, angiogenesis, immune/inflammatory response were enriched in CAFs vs. NOFs. Nestin, a stem-cell marker up-regulated in CAFs vs. NOFs, was confirmed to be expressed in the TME with immunohistochemistry. CONCLUSIONS: The identified pathways and participating proteins may provide novel insight on the tumour-promoting properties of CAFs and unravel novel adjuvant therapeutic targets in the TME.


Subject(s)
Adenocarcinoma/metabolism , Cancer-Associated Fibroblasts/metabolism , Esophageal Neoplasms/metabolism , Fibroblasts/metabolism , Proteome/analysis , Adenocarcinoma/pathology , Cancer-Associated Fibroblasts/pathology , Cells, Cultured , Datasets as Topic , Esophageal Neoplasms/pathology , Fibroblasts/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Primary Cell Culture , Proteome/metabolism , Proteomics/methods , Transcriptome , Tumor Microenvironment/physiology
4.
Int J Cancer ; 140(7): 1564-1570, 2017 04 01.
Article in English | MEDLINE | ID: mdl-27997688

ABSTRACT

Tumors carrying hereditary mutations in BRCA1, which attenuate the BRCA1 DNA damage repair pathway, are more susceptible to dual treatment with PARP inhibitors and DNA damaging therapeutics. Conversely, breast cancer tumors with nonmutated functional BRCA1 are less sensitive to PARP inhibition. We describe a method that triggers susceptibility to PARP inhibition in BRCA1-functional tumor cells. BRCA1 exon 11 is a key for the function of BRCA1 in DNA damage repair. Analysis of the BRCA1 exon 11 splicing mechanism identified a key region within this exon which, when deleted, induced exon 11 skipping. An RNA splice-switching oligonucleotide (SSO) developed to target this region was shown to artificially stimulate skipping of exon 11 in endogenous BRCA1 pre-mRNA. SSO transfection rendered wild-type BRCA1 expressing cell lines more susceptible to PARP inhibitor treatment, as demonstrated by a reduction in cell survival at all SSO concentrations tested. Combined SSO and PARP inhibitor treatment increased γH2AX expression indicating that SSO-dependent skipping of BRCA1 exon 11 was able to promote DSBs and therefore synthetic lethality. In conclusion, this SSO provides a new potential therapeutic strategy for targeting BRCA1-functional breast cancer by enhancing the effect of PARP inhibitors.


Subject(s)
Alternative Splicing , Breast Neoplasms/genetics , Genes, BRCA1 , Oligonucleotides/genetics , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Apoptosis/drug effects , Benzimidazoles/therapeutic use , Cell Line, Tumor , Cell Survival , DNA Damage , DNA Repair/drug effects , Exons , Female , Humans , MCF-7 Cells , Mutation , Oligonucleotides/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Polymerase Chain Reaction , RNA Precursors
5.
J Pathol ; 235(3): 466-77, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25345775

ABSTRACT

Interactions between cancer cells and cancer-associated fibroblasts (CAFs) play an important role in tumour development and progression. In this study we investigated the functional role of CAFs in oesophageal adenocarcinoma (EAC). We used immunochemistry to analyse a cohort of 183 EAC patients for CAF markers related to disease mortality. We characterized CAFs and normal oesophageal fibroblasts (NOFs) using western blotting, immunofluorescence and gel contraction. Transwell assays, 3D organotypic culture and xenograft models were used to examine the effects on EAC cell function and to dissect molecular mechanisms regulating invasion. Most EACs (93%) contained CAFs with a myofibroblastic (α-SMA-positive) phenotype, which correlated significantly with poor survival [p = 0.016; HR 7. 1 (1.7-29.4)]. Primary CAFs isolated from EACs have a contractile, myofibroblastic phenotype and promote EAC cell invasion in vitro (Transwell assays, p ≤ 0.05; organotypic culture, p < 0.001) and in vivo (p ≤ 0.05). In vitro, this pro-invasive effect is modulated through the matricellular protein periostin. Periostin is secreted by CAFs and acts as a ligand for EAC cell integrins αvß3 and αvß5, promoting activation of the PI3kinase-Akt pathway. In patient samples, periostin expression at the tumour cell-stromal interface correlates with poor overall and disease-free survival. Our study highlights the importance of the tumour stroma in EAC progression. Paracrine interaction between CAF-secreted periostin and EAC-expressed integrins results in PI3 kinase-Akt activation and increased tumour cell invasion. Most EACs contain a myofibroblastic CAF-rich stroma; this may explain the aggressive, highly infiltrative nature of the disease, and suggests that stromal targeting may produce therapeutic benefit in EAC patients.


Subject(s)
Adenocarcinoma/mortality , Adenocarcinoma/pathology , Cell Adhesion Molecules/pharmacology , Cell Movement/drug effects , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophagus/pathology , Fibroblasts/pathology , Actins/metabolism , Adenocarcinoma/metabolism , Adult , Aged , Aged, 80 and over , Animals , Biomarkers, Tumor/metabolism , Cells, Cultured , Cohort Studies , Disease Models, Animal , Esophageal Neoplasms/metabolism , Female , Heterografts , Humans , In Vitro Techniques , Male , Mice , Mice, SCID , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Survival Rate , Tumor Microenvironment
6.
J Pathol ; 233(2): 196-208, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24573955

ABSTRACT

Aberrant Hedgehog (Hh) signalling has been reported in a number of malignancies, particularly basal cell carcinoma (BCC) of the skin. Clinical trials of Hh inhibitors are underway in many cancers, and these have produced significant clinical benefit in BCC patients, although regrowth of new, or clinically aggressive, variants, as well as development of secondary malignancies, has been reported. αvß6 integrin is expressed in many cancers, where it has been shown to correlate with an aggressive tumour phenotype and poor prognosis. We have previously reported αvß6 up-regulation in aggressive, morphoeic BCC variants, where it modulates the stromal response and induces invasion. To examine a possible link between Hh and αvß6 function, we generated BCC models, overexpressing Gli1 in immortalized keratinocytes (NTert1, HaCaT). Unexpectedly, we found that suppressing Gli1 significantly increased αvß6 expression. This promoted tumour cell motility and also stromal myofibroblast differentiation through integrin-dependent TGF-ß1 activation. Gli1 inhibited αvß6 expression by suppressing TGF-ß1-induced Smad2/3 activation, blocking a positive feedback loop maintaining high αvß6 levels. A similar mechanism was observed in AsPC1 pancreatic cancer cells expressing endogenous Gli1, suggesting a common mechanism across tumour types. In vitro findings were supported using human clinical samples, where we showed an inverse correlation between αvß6 and Gli1 expression in different BCC subtypes and pancreatic cancers. In summary, we show that expression of Gli1 and αvß6 inversely correlates in tumours in vivo, and Hh targeting up-regulates TGF-ß1/Smad2/3-dependent αvß6 expression, promoting pro-tumourigenic cell functions in vitro. These results have potential clinical significance, given the reported recurrence of BCC variants and secondary malignancies in patients treated by Hh targeting.


Subject(s)
Antigens, Neoplasm/metabolism , Carcinoma, Basal Cell/metabolism , Cell Transformation, Neoplastic/metabolism , Hedgehog Proteins/metabolism , Integrins/metabolism , Pancreatic Neoplasms/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Transcription Factors/metabolism , Antigens, Neoplasm/genetics , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Cell Line , Cell Movement , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Coculture Techniques , Down-Regulation , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Integrins/genetics , Keratinocytes/metabolism , Keratinocytes/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , RNA Interference , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transcription Factors/genetics , Transfection , Transforming Growth Factor beta1/metabolism , Zinc Finger Protein GLI1
8.
Nat Cell Biol ; 25(12): 1804-1820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38012402

ABSTRACT

Drugs that selectively kill senescent cells (senolytics) improve the outcomes of cancer, fibrosis and age-related diseases. Despite their potential, our knowledge of the molecular pathways that affect the survival of senescent cells is limited. To discover senolytic targets, we performed RNAi screens and identified coatomer complex I (COPI) vesicle formation as a liability of senescent cells. Genetic or pharmacological inhibition of COPI results in Golgi dispersal, dysfunctional autophagy, and unfolded protein response-dependent apoptosis of senescent cells, and knockdown of COPI subunits improves the outcomes of cancer and fibrosis in mouse models. Drugs targeting COPI have poor pharmacological properties, but we find that N-myristoyltransferase inhibitors (NMTi) phenocopy COPI inhibition and are potent senolytics. NMTi selectively eliminated senescent cells and improved outcomes in models of cancer and non-alcoholic steatohepatitis. Our results suggest that senescent cells rely on a hyperactive secretory apparatus and that inhibiting trafficking kills senescent cells with the potential to treat various senescence-associated diseases.


Subject(s)
Neoplasms , Senotherapeutics , Mice , Animals , Golgi Apparatus/metabolism , Cellular Senescence , Neoplasms/metabolism , Fibrosis
9.
J Extracell Vesicles ; 11(5): e12226, 2022 05.
Article in English | MEDLINE | ID: mdl-35595718

ABSTRACT

Colorectal cancer (CRC) with a mesenchymal gene expression signature has the greatest propensity for distant metastasis and is characterised by the accumulation of cancer-associated fibroblasts in the stroma. We investigated whether the epithelial to mesenchymal transition status of CRC cells influences fibroblast phenotype, with a focus on the transfer of extracellular vesicles (EVs), as a controlled means of cell-cell communication. Epithelial CRC EVs suppressed TGF-ß-driven myofibroblast differentiation, whereas mesenchymal CRC EVs did not. This was driven by miR-200 (miR-200a/b/c, -141), which was enriched in epithelial CRC EVs and transferred to recipient fibroblasts. Ectopic miR-200 expression or ZEB1 knockdown, in fibroblasts, similarly suppressed myofibroblast differentiation. Supporting these findings, there was a strong negative correlation between miR-200 and myofibroblastic markers in a cohort of CRC patients in the TCGA dataset. This was replicated in mice, by co-injecting epithelial or mesenchymal CRC cells with fibroblasts and analysing stromal markers of myofibroblastic phenotype. Fibroblasts from epithelial tumours contained more miR-200 and expressed less ACTA2 and FN1 than those from mesenchymal tumours. As such, these data provide a new mechanism for the development of fibroblast heterogeneity in CRC, through EV-mediated transfer of miRNAs, and provide an explanation as to why CRC tumours with greater metastatic potential are CAF rich.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Extracellular Vesicles , MicroRNAs , Animals , Colorectal Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Extracellular Vesicles/genetics , Extracellular Vesicles/metabolism , Fibroblasts/metabolism , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype
10.
Cancer Res ; 82(24): 4571-4585, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36353752

ABSTRACT

Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. SIGNIFICANCE: ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Cancer-Associated Fibroblasts , Immunotherapy , Neoplasms , Humans , Ataxia Telangiectasia Mutated Proteins/metabolism , Cancer-Associated Fibroblasts/metabolism , Cell Differentiation , Myofibroblasts/metabolism , Drug Resistance, Neoplasm
11.
Mol Oncol ; 15(8): 2065-2083, 2021 08.
Article in English | MEDLINE | ID: mdl-33931939

ABSTRACT

Resistance to adjuvant chemotherapy is a major clinical problem in the treatment of colorectal cancer (CRC). The aim of this study was to elucidate the role of an epithelial to mesenchymal transition (EMT)-inducing protein, ZEB2, in chemoresistance of CRC, and to uncover the underlying mechanism. We performed IHC for ZEB2 and association analyses with clinical outcomes on primary CRC and matched CRC liver metastases in compliance with observational biomarker study guidelines. ZEB2 expression in primary tumours was an independent prognostic marker of reduced overall survival and disease-free survival in patients who received adjuvant FOLFOX chemotherapy. ZEB2 expression was retained in 96% of liver metastases. The ZEB2-dependent EMT transcriptional programme activated nucleotide excision repair (NER) pathway largely via upregulation of the ERCC1 gene and other components in NER pathway, leading to enhanced viability of CRC cells upon oxaliplatin treatment. ERCC1-overexpressing CRC cells did not respond to oxaliplatin in vivo, as assessed using a murine orthotopic model in a randomised and blinded preclinical study. Our findings show that ZEB2 is a biomarker of tumour response to chemotherapy and risk of recurrence in CRC patients. We propose that the ZEB2-ERCC1 axis is a key determinant of chemoresistance in CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Colorectal Neoplasms/genetics , DNA Repair/genetics , DNA-Binding Proteins/genetics , Endonucleases/genetics , Epithelial-Mesenchymal Transition/genetics , Transcription, Genetic , Zinc Finger E-box Binding Homeobox 2/physiology , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Fluorouracil/therapeutic use , Humans , Leucovorin/therapeutic use , Liver Neoplasms/secondary , Mice , Organoplatinum Compounds/therapeutic use , Xenograft Model Antitumor Assays
12.
Cancer Res ; 80(9): 1846-1860, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32122909

ABSTRACT

Determining mechanisms of resistance to αPD-1/PD-L1 immune-checkpoint immunotherapy is key to developing new treatment strategies. Cancer-associated fibroblasts (CAF) have many tumor-promoting functions and promote immune evasion through multiple mechanisms, but as yet, no CAF-specific inhibitors are clinically available. Here we generated CAF-rich murine tumor models (TC1, MC38, and 4T1) to investigate how CAFs influence the immune microenvironment and affect response to different immunotherapy modalities [anticancer vaccination, TC1 (HPV E7 DNA vaccine), αPD-1, and MC38] and found that CAFs broadly suppressed response by specifically excluding CD8+ T cells from tumors (not CD4+ T cells or macrophages); CD8+ T-cell exclusion was similarly present in CAF-rich human tumors. RNA sequencing of CD8+ T cells from CAF-rich murine tumors and immunochemistry analysis of human tumors identified significant upregulation of CTLA-4 in the absence of other exhaustion markers; inhibiting CTLA-4 with a nondepleting antibody overcame the CD8+ T-cell exclusion effect without affecting Tregs. We then examined the potential for CAF targeting, focusing on the ROS-producing enzyme NOX4, which is upregulated by CAF in many human cancers, and compared this with TGFß1 inhibition, a key regulator of the CAF phenotype. siRNA knockdown or pharmacologic inhibition [GKT137831 (Setanaxib)] of NOX4 "normalized" CAF to a quiescent phenotype and promoted intratumoral CD8+ T-cell infiltration, overcoming the exclusion effect; TGFß1 inhibition could prevent, but not reverse, CAF differentiation. Finally, NOX4 inhibition restored immunotherapy response in CAF-rich tumors. These findings demonstrate that CAF-mediated immunotherapy resistance can be effectively overcome through NOX4 inhibition and could improve outcome in a broad range of cancers. SIGNIFICANCE: NOX4 is critical for maintaining the immune-suppressive CAF phenotype in tumors. Pharmacologic inhibition of NOX4 potentiates immunotherapy by overcoming CAF-mediated CD8+ T-cell exclusion. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/9/1846/F1.large.jpg.See related commentary by Hayward, p. 1799.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Humans , Immunotherapy , Mice , NADPH Oxidase 4 , Reactive Oxygen Species
15.
Methods Mol Biol ; 1765: 87-98, 2018.
Article in English | MEDLINE | ID: mdl-29589303

ABSTRACT

Colorectal cancer (CRC) is a key public health concern and the second highest cause of cancer related death in Western society. A dynamic interaction exists between CRC cells and the surrounding tumor microenvironment, which can stimulate not only the development of CRC, but its progression and metastasis, as well as the development of resistance to therapy. In this chapter, we focus on the role of fibroblasts within the CRC tumor microenvironment and describe some of the key methods for their study, as well as the evaluation of dynamic interactions within this biological ecosystem.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Colorectal Neoplasms/pathology , Primary Cell Culture/methods , Tumor Microenvironment , Xenograft Model Antitumor Assays/methods , Animals , Coculture Techniques/instrumentation , Coculture Techniques/methods , Colorectal Neoplasms/surgery , Disease Progression , Humans , Laser Capture Microdissection/instrumentation , Laser Capture Microdissection/methods , Mice , Mice, Nude , Mice, SCID , Primary Cell Culture/instrumentation , Stromal Cells/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays/instrumentation
16.
J Natl Cancer Inst ; 110(1)2018 01 01.
Article in English | MEDLINE | ID: mdl-28922779

ABSTRACT

Background: Cancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed. Methods: CAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4's role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9-15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided. Results: Patients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69-7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers (P < .001), strongly correlating with myofibroblastic-CAFs (r = 0.65-0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%-79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%-64.0% decrease across different models, P ≤ .04). Conclusions: These data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.


Subject(s)
Adenocarcinoma/drug therapy , Cancer-Associated Fibroblasts/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Squamous Cell/drug therapy , Colorectal Neoplasms/chemistry , Esophageal Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Mouth Neoplasms/chemistry , Myofibroblasts/pathology , NADPH Oxidases/antagonists & inhibitors , Oropharyngeal Neoplasms/chemistry , Actins/analysis , Adenocarcinoma/chemistry , Adenocarcinoma/genetics , Adult , Aged , Aged, 80 and over , Animals , Cancer-Associated Fibroblasts/chemistry , Cancer-Associated Fibroblasts/physiology , Carcinoma, Non-Small-Cell Lung/chemistry , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Squamous Cell/chemistry , Carcinoma, Squamous Cell/genetics , Cell Count , Cell Transdifferentiation/drug effects , Cell Transdifferentiation/genetics , Colorectal Neoplasms/pathology , Disease Progression , Esophageal Neoplasms/chemistry , Esophageal Neoplasms/genetics , Female , Head and Neck Neoplasms/chemistry , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Mouth Neoplasms/pathology , Myofibroblasts/chemistry , NADPH Oxidase 4 , NADPH Oxidases/analysis , NADPH Oxidases/genetics , Neoplasm Transplantation , Oropharyngeal Neoplasms/pathology , Phenotype , Pyrazoles/therapeutic use , Pyrazolones , Pyridines/therapeutic use , Pyridones , RNA Interference , Reactive Oxygen Species/metabolism , Survival Rate , Up-Regulation
17.
Cancer Res ; 65(18): 8308-16, 2005 Sep 15.
Article in English | MEDLINE | ID: mdl-16166307

ABSTRACT

High mobility group A1 (HMGA1) is an architectural transcription factor and a putative protoncogene. Deregulation of its expression has been shown in most human cancers. We have previously shown that the expression of the HMGA family members is deregulated in neuroblastoma cell lines and primary tumors. On retinoic acid (RA) treatment of MYCN-amplified neuroblastoma cell lines, HMGA1 decreases with a kinetics that strictly follows MYCN repression. In addition, MYCN constitutive expression abolishes HMGA1 repression by RA. Here we explored the possibility that HMGA1 expression might be sustained by MYCN in amplified cells. Indeed, MYCN transfection induced HMGA1 expression in several neuroblastoma cell lines. HMGA1 expression increased in a transgene dose-dependent fashion in neuroblastoma-like tumors of MYCN transgenic mice. In addition, it was significantly more expressed in MYCN-amplified compared with MYCN single-copy primary human neuroblastomas. MYCN cotransfection activated a promoter/luciferase reporter containing a 1,600 bp region surrounding the first three transcription start sites of the human HMGA1 and eight imperfect E-boxes. By heterodimerizing with its partner MAX, MYCN could bind to multiple DNA fragments within the 1,600 bp. Either 5' or 3' deletion variants of the 1,600 bp promoter/luciferase reporter strongly decreased luciferase activity, suggesting that, more than a single site, the cooperative function of multiple cis-acting elements mediates direct HMGA1 transactivation by MYCN. Finally, HMGA1 repression by RNA interference reduced neuroblastoma cell proliferation, indicating that HMGA1 is a novel MYCN target gene relevant for neuroblastoma tumorigenesis.


Subject(s)
HMGA Proteins/genetics , Neuroblastoma/genetics , Nuclear Proteins/genetics , Oncogene Proteins/genetics , Animals , Cell Growth Processes/genetics , Cell Line, Tumor , Child , Gene Amplification , Genes, Reporter , HMGA Proteins/biosynthesis , Humans , Luciferases/biosynthesis , Luciferases/genetics , Mice , Mice, Transgenic , N-Myc Proto-Oncogene Protein , Neuroblastoma/metabolism , Promoter Regions, Genetic , RNA Interference , Transcriptional Activation , Transfection
18.
Methods Mol Biol ; 1509: 115-122, 2017.
Article in English | MEDLINE | ID: mdl-27826922

ABSTRACT

The tumor microenvironment is a heterogeneous and dynamic network that exists between cancer and stroma, playing a critical role in cancer progression. Certain tumorigenic signals such as microRNAs are derived from the stroma and conveyed to cancer cells (and vice versa) in nanoparticles called exosomes. Their identification and characterization is an important step in better understanding cellular cross talk and its consequences. To this end we describe how to culture primary ex vivo derived fibroblasts from colorectal tissue, isolate their exosomes, extract exosomal RNA and perform microRNA profiling.


Subject(s)
Colorectal Neoplasms/metabolism , Exosomes/metabolism , Fibroblasts/metabolism , Gene Expression Profiling , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cells, Cultured , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/genetics , Exosomes/genetics , Humans , MicroRNAs/isolation & purification , MicroRNAs/metabolism , Oligonucleotide Array Sequence Analysis , Primary Cell Culture , Real-Time Polymerase Chain Reaction , Rectum/metabolism , Rectum/pathology
19.
Aging (Albany NY) ; 9(12): 2666-2694, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29283887

ABSTRACT

Colorectal cancer is a global disease with increasing incidence. Mortality is largely attributed to metastatic spread and therefore, a mechanistic dissection of the signals which influence tumor progression is needed. Cancer stroma plays a critical role in tumor proliferation, invasion and chemoresistance. Here, we sought to identify and characterize exosomal microRNAs as mediators of stromal-tumor signaling. In vitro, we demonstrated that fibroblast exosomes are transferred to colorectal cancer cells, with a resultant increase in cellular microRNA levels, impacting proliferation and chemoresistance. To probe this further, exosomal microRNAs were profiled from paired patient-derived normal and cancer-associated fibroblasts, from an ongoing prospective biomarker study. An exosomal cancer-associated fibroblast signature consisting of microRNAs 329, 181a, 199b, 382, 215 and 21 was identified. Of these, miR-21 had highest abundance and was enriched in exosomes. Orthotopic xenografts established with miR-21-overexpressing fibroblasts and CRC cells led to increased liver metastases compared to those established with control fibroblasts. Our data provide a novel stromal exosome signature in colorectal cancer, which has potential for biomarker validation. Furthermore, we confirmed the importance of stromal miR-21 in colorectal cancer progression using an orthotopic model, and propose that exosomes are a vehicle for miR-21 transfer between stromal fibroblasts and cancer cells.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Colorectal Neoplasms/pathology , Exosomes/metabolism , MicroRNAs/genetics , Aged , Animals , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Disease Progression , Exosomes/genetics , Female , Heterografts , Humans , Male , Mice , MicroRNAs/metabolism
20.
Aging (Albany NY) ; 8(8): 1608-35, 2016 08.
Article in English | MEDLINE | ID: mdl-27385366

ABSTRACT

Senescent cancer-associated fibroblasts (CAF) develop a senescence-associated secretory phenotype (SASP) that is believed to contribute to cancer progression. The mechanisms underlying SASP development are, however, poorly understood. Here we examined the functional role of microRNA in the development of the SASP in normal fibroblasts and CAF. We identified a microRNA, miR-335, up-regulated in the senescent normal fibroblasts and CAF and able to modulate the secretion of SASP factors and induce cancer cell motility in co-cultures, at least in part by suppressing the expression of phosphatase and tensin homologue (PTEN). Additionally, elevated levels of cyclo-oxygenase 2 (PTGS2; COX-2) and prostaglandin E2 (PGE2) secretion were observed in senescent fibroblasts, and inhibition of COX-2 by celecoxib reduced the expression of miR-335, restored PTEN expression and decreased the pro-tumourigenic effects of the SASP. Collectively these data demonstrate the existence of a novel miRNA/PTEN-regulated pathway modulating the inflammasome in senescent fibroblasts.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Cellular Senescence/physiology , Cyclooxygenase 2/metabolism , MicroRNAs/metabolism , PTEN Phosphohydrolase/metabolism , Signal Transduction/physiology , Cancer-Associated Fibroblasts/drug effects , Celecoxib/pharmacology , Cell Movement/drug effects , Cell Movement/physiology , Coculture Techniques , Dinoprostone/metabolism , Humans , Phenotype , Signal Transduction/drug effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL