Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Microbiol ; 23(11): 7152-7167, 2021 11.
Article in English | MEDLINE | ID: mdl-34490972

ABSTRACT

Only about 10%-30% of the organic matter produced in the epipelagic layers reaches the dark ocean. Under these limiting conditions, reduced inorganic substrates might be used as an energy source to fuel prokaryotic chemoautotrophic and/or mixotrophic activity. The aprA gene encodes the alpha subunit of the adenosine-5'-phosphosulfate (APS) reductase, present in sulfate-reducing (SRP) and sulfur-oxidizing prokaryotes (SOP). The sulfur-oxidizing pathway can be coupled to inorganic carbon fixation via the Calvin-Benson-Bassham cycle. The abundances of aprA and cbbM, encoding RuBisCO form II (the key CO2 fixing enzyme), were determined over the entire water column along a latitudinal transect in the Atlantic from 64°N to 50°S covering six oceanic provinces. The abundance of aprA and cbbM genes significantly increased with depth reaching the highest abundances in meso- and upper bathypelagic layers. The contribution of cells containing these genes also increased from mesotrophic towards oligotrophic provinces, suggesting that under nutrient limiting conditions alternative energy sources are advantageous. However, the aprA/cbbM ratios indicated that only a fraction of the SOP is associated with inorganic carbon fixation. The aprA harbouring prokaryotic community was dominated by Pelagibacterales in surface and mesopelagic waters, while Candidatus Thioglobus, Chromatiales and the Deltaproteobacterium_SCGC dominated the bathypelagic realm. Noticeably, the contribution of the SRP to the prokaryotic community harbouring aprA gene was low, suggesting a major utilization of inorganic sulfur compounds either as an energy source (occasionally coupled with inorganic carbon fixation) or in biosynthesis pathways.


Subject(s)
Chemoautotrophic Growth , Gammaproteobacteria , Atlantic Ocean , Gammaproteobacteria/genetics , Seawater/chemistry , Sulfur/metabolism
2.
Environ Microbiol ; 21(10): 3873-3884, 2019 10.
Article in English | MEDLINE | ID: mdl-31298776

ABSTRACT

Messenger RNA can provide valuable insights into the variability of metabolic processes of microorganisms. However, due to uncertainties that include the stability of RNA, its application for activity profiling of environmental samples is questionable. We explored different factors affecting the decay rate of transcripts of three marine bacterial isolates using qPCR and determined mRNA half-life time of specific bacterial taxa and of functional genes by metatranscriptomics of a coastal environmental prokaryotic community. The half-life time of transcripts from 11 genes from bacterial isolates ranged from 1 to 46 min. About 80% of the analysed transcripts exhibited half-live times shorter than 10 min. Significant differences were found in the half-life time between mRNA and rRNA. The half-life time of mRNA obtained from a coastal metatranscriptome ranged from 9 to 400 min. The shortest half-life times of the metatranscriptome corresponded to transcripts from the same clusters of orthologous groups (COGs) in all bacterial classes. The prevalence of short mRNA half-life time in genes related to defence mechanisms and motility indicate a tight connection of RNA decay rate to environmental stressors. The short half-life time of RNA and its high variability needs to be considered when assessing metatranscriptomes especially in environmental samples.


Subject(s)
Bacteria/genetics , RNA Stability/physiology , RNA, Messenger/genetics , Aquatic Organisms/classification , Aquatic Organisms/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Half-Life , RNA, Ribosomal/genetics , Transcriptome/genetics
3.
ISME Commun ; 4(1): ycae004, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38425478

ABSTRACT

The osmotrophic uptake of dissolved organic compounds in the ocean is considered to be dominated by heterotrophic prokaryotes, whereas the role of planktonic eukaryotes is still unclear. We explored the capacity of natural eukaryotic plankton communities to incorporate the synthetic amino acid L-homopropargylglycine (HPG, analogue of methionine) using biorthogonal noncanonical amino acid tagging (BONCAT), and we compared it with prokaryotic HPG use throughout a 9-day survey in the NW Mediterranean. BONCAT allows to fluorescently identify translationally active cells, but it has never been applied to natural eukaryotic communities. We found a large diversity of photosynthetic and heterotrophic eukaryotes incorporating HPG into proteins, with dinoflagellates and diatoms showing the highest percentages of BONCAT-labelled cells (49 ± 25% and 52 ± 15%, respectively). Among them, pennate diatoms exhibited higher HPG incorporation in the afternoon than in the morning, whereas small (≤5 µm) photosynthetic eukaryotes and heterotrophic nanoeukaryotes showed the opposite pattern. Centric diatoms (e.g. Chaetoceros, Thalassiosira, and Lauderia spp.) dominated the eukaryotic HPG incorporation due to their high abundances and large sizes, accounting for up to 86% of the eukaryotic BONCAT signal and strongly correlating with bulk 3H-leucine uptake rates. When including prokaryotes, eukaryotes were estimated to account for 19-31% of the bulk BONCAT signal. Our results evidence a large complexity in the osmotrophic uptake of HPG, which varies over time within and across eukaryotic groups and highlights the potential of BONCAT to quantify osmotrophy and protein synthesis in complex eukaryotic communities.

4.
Sci Rep ; 12(1): 2064, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35136122

ABSTRACT

Microbial community metabolism and functionality play a key role modulating global biogeochemical processes. However, the metabolic activities and contribution of actively growing prokaryotes to ecosystem energy fluxes remain underexplored. Here we describe the temporal and spatial dynamics of active prokaryotes in the different water masses of the Mediterranean Sea using a combination of bromodeoxyuridine labelling and 16S rRNA gene Illumina sequencing. Bulk and actively dividing prokaryotic communities were drastically different and depth stratified. Alteromonadales were rare in bulk communities (contributing 0.1% on average) but dominated the actively dividing community throughout the overall water column (28% on average). Moreover, temporal variability of actively dividing Alteromonadales oligotypes was evinced. SAR86, Actinomarinales and Rhodobacterales contributed on average 3-3.4% each to the bulk and 11, 8.4 and 8.5% to the actively dividing communities in the epipelagic zone, respectively. SAR11 and Nitrosopumilales contributed less to the actively dividing than to the bulk communities during all the study period. Noticeably, the large contribution of these two taxa to the total prokaryotic communities (23% SAR11 and 26% Nitrosopumilales), especially in the meso- and bathypelagic zones, results in important contributions to actively dividing communities (11% SAR11 and 12% Nitrosopumilales). The intense temporal and spatial variability of actively dividing communities revealed in this study strengthen the view of a highly dynamic deep ocean. Our results suggest that some rare or low abundant phylotypes from surface layers down to the deep sea can disproportionally contribute to the activity of the prokaryotic communities, exhibiting a more dynamic response to environmental changes than other abundant phylotypes, emphasizing the role they might have in community metabolism and biogeochemical processes.


Subject(s)
Alphaproteobacteria/growth & development , Archaea/growth & development , Gammaproteobacteria/growth & development , Microbiota/genetics , Alphaproteobacteria/classification , Alphaproteobacteria/genetics , Archaea/classification , Archaea/genetics , Bromodeoxyuridine/chemistry , Environment , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Mediterranean Sea , Microbiota/physiology , RNA, Ribosomal, 16S/genetics , Seawater/microbiology
5.
Sci Rep ; 11(1): 17859, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34504142

ABSTRACT

Dark ocean microbial dynamics are fundamental to understand ecosystem metabolism and ocean biogeochemical processes. Yet, the ecological response of deep ocean communities to environmental perturbations remains largely unknown. Temporal and spatial dynamics of the meso- and bathypelagic prokaryotic communities were assessed throughout a 2-year seasonal sampling across the western Mediterranean Sea. A common pattern of prokaryotic communities' depth stratification was observed across the different regions and throughout the seasons. However, sporadic and drastic alterations of the community composition and diversity occurred either at specific water masses or throughout the aphotic zone and at a basin scale. Environmental changes resulted in a major increase in the abundance of rare or low abundant phylotypes and a profound change of the community composition. Our study evidences the temporal dynamism of dark ocean prokaryotic communities, exhibiting long periods of stability but also drastic changes, with implications in community metabolism and carbon fluxes. Taken together, the results highlight the importance of monitoring the temporal patterns of dark ocean prokaryotic communities.

6.
Front Microbiol ; 11: 1749, 2020.
Article in English | MEDLINE | ID: mdl-32849378

ABSTRACT

Surface microbial communities are exposed to seasonally changing environmental conditions, resulting in recurring patterns of community composition. However, knowledge on temporal dynamics of open ocean microbial communities remains scarce. Seasonal patterns and associations of taxa and oligotypes from surface and chlorophyll maximum layers in the western Mediterranean Sea were studied over a 2-year period. Summer stratification versus winter mixing governed not only the prokaryotic community composition and diversity but also the temporal dynamics and co-occurrence association networks of oligotypes. Flavobacteriales, Rhodobacterales, SAR11, SAR86, and Synechococcales oligotypes exhibited contrasting seasonal dynamics, and consequently, specific microbial assemblages and potential inter-oligotype connections characterized the different seasons. In addition, oligotypes composition and dynamics differed between surface and deep chlorophyll maximum (DCM) prokaryotic communities, indicating depth-related environmental gradients as a major factor affecting association networks between closely related taxa. Taken together, the seasonal and depth specialization of oligotypes suggest temporal dynamics of community composition and metabolism, influencing ecosystem function and global biogeochemical cycles. Moreover, our results indicate highly specific associations between microbes, pointing to keystone ecotypes and fine-tuning of the microbes realized niche.

7.
Eur J Clin Nutr ; 72(Suppl 1): 38-46, 2019 07.
Article in English | MEDLINE | ID: mdl-30487560

ABSTRACT

Increasing scientific evidence shows that the Mediterranean lifestyle -including a characteristic dietary pattern as well as psychosocial and cultural features- has beneficial effects on human health. However, production and use of some of the distinctive components (e.g., olive oil, red wine, nuts, legumes, fish and seafood) of the Mediterranean diet (MedDiet) are not exclusively confined to the Mediterranean Basin, but are also found in other world regions, including California, Southwestern Australia, South Africa, and Chile. Central Chile exhibits a Mediterranean climate and Chilean agriculture and culinary traditions show striking similarities to Mediterranean countries. Using a MedDiet index adapted to food habits in Chile, we found that only 10% of the adult population displays this healthy eating behavior. Furthermore, high scores in the MedDiet index correlate with lower prevalence of overweight, obesity, and metabolic syndrome in Chilean adults. High adherence to a Mediterranean-like diet is also associated with better psychological wellbeing. Finally, a pilot study investigating the effects of a Mediterranean diet in Chile -as part of a 'food-at-work intervention'- showed a significant improvement in diet quality which was associated with a 35% reduction in the prevalence of the metabolic syndrome. Increased appreciation and application of a Mediterranean-like dietary pattern may therefore improve health and quality of life in the population of Chile, where non-communicable chronic diseases are increasingly common.


Subject(s)
Cardiovascular Diseases/epidemiology , Diet, Mediterranean , Health Promotion , Life Style , Cardiovascular Diseases/prevention & control , Chile/epidemiology , Humans
8.
Front Microbiol ; 10: 1698, 2019.
Article in English | MEDLINE | ID: mdl-31396196

ABSTRACT

The phytoplankton community composition, structure, and biomass were investigated under stratified and oligotrophic conditions during summer for three consecutive years in the Mediterranean Sea. Our results reveal that the phytoplankton community structure was strongly influenced by vertical stratification. The thermocline separated two different phytoplankton communities in the two layers of the euphotic zone, characterized by different nutrient and light availability. Picoplankton dominated in terms of abundance and biomass at all the stations sampled and throughout the photic zone. However, the structure of the picoplanktonic community changed with depth, with Synechococcus and heterotrophic prokaryotes dominating in surface waters down to the base of the thermocline, and Prochlorococcus and picoeukaryotes contributing relatively more to the community in the deep chlorophyll maximum (DCM). Light and nutrient availability also influenced the communities at the DCM layer. Prochlorococcus prevailed in deeper DCM waters characterized by lower light intensities and higher picophytoplankton abundance was related to lower nutrient concentrations at the DCM. Picoeukaryotes were the major phytoplankton contributors to carbon biomass at surface (up to 80%) and at DCM (more than 40%). Besides, contrarily to the other phytoplankton groups, picoeukaryotes cell size progressively decreased with depth. Our research shows that stratification is a major factor determining the phytoplankton community structure; and underlines the role that picoeukaryotes might play in the carbon flux through the marine food web, with implications for the community metabolism and carbon fate in the ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL