Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36016017

ABSTRACT

With the fast and unstoppable development of technology, the amount of available technological devices and the data they produce is overwhelming. In analyzing the context of a smart home, a diverse group of intelligent devices generating constant reports of its environment information is needed for the proper control of the house. Due to this demand, many possible solutions have been developed in the literature to assess the need for processing power and storage capacity. This work proposes HOsT (home-context-aware fog-computing solution)-a solution that addresses the problems of data heterogeneity and the interoperability of smart objects in the context of a smart home. HOsT was modeled to compose a set of intelligent objects to form a computational infrastructure in fog. A publish/subscribe communication module was implemented to abstract the details of communication between objects to disseminate heterogeneous information. A performance evaluation was carried out to validate HOsT. The results show evidence of efficiency in the communication infrastructure; and in the impact of HOsT compared with a cloud infrastructure. Furthermore, HOsT provides scalability about the number of devices acting simultaneously and demonstrates its ability to work with different devices.


Subject(s)
Environment
2.
Sensors (Basel) ; 21(15)2021 Jul 24.
Article in English | MEDLINE | ID: mdl-34372265

ABSTRACT

The Intelligent Transport Systems (ITS) has the objective quality of transportation improvement through transportation system monitoring and management and makes the trip more comfortable and safer for drivers and passengers. The mobile clouds can assist the ITS in handling the resource management problem. However, resource allocation management in an ITS is challenging due to vehicular network characteristics, such as high mobility and dynamic topology. With that in mind, we propose the FORESAM, a mechanism for resources management and allocation based on a set of FOGs which control vehicular cloud resources in the urban environment. The mechanism is based on a more accurate mathematical model (Multiple Attribute Decision), which aims to assist the allocation decision of resources set that meets the period requested service. The simulation results have shown that the proposed solution allows a higher number of services, reducing the number of locks of services with its accuracy. Furthermore, its resource allocation is more balanced the provided a smaller amount of discarded services.


Subject(s)
Algorithms , Resource Allocation , Models, Theoretical , Transportation , Weather
3.
Sensors (Basel) ; 20(19)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977383

ABSTRACT

Technological advancement is currently focused on the miniaturization of devices, and integrated circuits allow us to observe the increase in the number of Internet of Things (IoT) devices. Most IoT services and devices require an Internet connection, which needs to provide the minimum processing, storage and networking requirements to best serve a requested service. One of the main goals of 5G networks is to comply with the user's various Quality of Service (QoS) requirements in different application scenarios. Fifth-generation networks use Network Function Virtualization (NFV) and Mobile Edge Computing (MEC) concepts to achieve these QoS requirements. However, the computational resource allocation mechanisms required by the services are considered very complex. Thus, in this paper, we propose an allocation and management resources mechanism for 5G networks that uses MEC and simple mathematical methods to reduce the model complexity. The mechanism decides to allocate the resource in MEC to meet the requirements requested by the user. The simulation results show that the proposed mechanism provides a larger amount of services, leading to a reduction in the service lock number and as a reduction in the blocking ratio of services due to the accuracy of the approach and its load balancing in the process of resource allocation.

4.
Sensors (Basel) ; 20(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31861866

ABSTRACT

Automatic License Plate Recognition has been a recurrent research topic due to the increasing number of cameras available in cities, where most of them, if not all, are connected to the Internet. The video traffic generated by the cameras can be analyzed to provide useful insights for the transportation segment. This paper presents the development of an intelligent vehicle identification system based on optical character recognition (OCR) method to be used on intelligent transportation systems. The proposed system makes use of an intelligent parking system named Smart Parking Service (SPANS), which is used to manage public or private spaces. Using computer vision techniques, the SPANS system is used to detect if the parking slots are available or not. The proposed system makes use of SPANS framework to capture images of the parking spaces and identifies the license plate number of the vehicles that are moving around the parking as well as parked in the parking slots. The recognition of the license plate is made in real-time, and the performance of the proposed system is evaluated in real-time.

5.
Sensors (Basel) ; 18(3)2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29518890

ABSTRACT

With the advent of the Internet of Things, billions of objects or devices are inserted into the global computer network, generating and processing data at a volume never imagined before. This paper proposes a way to collect and process local data through a data fusion technology called summarization. The main feature of the proposal is the local data fusion, through parameters provided by the application, ensuring the quality of data collected by the sensor node. In the evaluation, the sensor node was compared when performing the data summary with another that performed a continuous recording of the collected data. Two sets of nodes were created, one with a sensor node that analyzed the luminosity of the room, which in this case obtained a reduction of 97% in the volume of data generated, and another set that analyzed the temperature of the room, obtaining a reduction of 80% in the data volume. Through these tests, it has been proven that the local data fusion at the node can be used to reduce the volume of data generated, consequently decreasing the volume of messages generated by IoT environments.

6.
PLoS One ; 11(8): e0159110, 2016.
Article in English | MEDLINE | ID: mdl-27526048

ABSTRACT

Intelligent Transportation Systems (ITS) rely on Inter-Vehicle Communication (IVC) to streamline the operation of vehicles by managing vehicle traffic, assisting drivers with safety and sharing information, as well as providing appropriate services for passengers. Traffic congestion is an urban mobility problem, which causes stress to drivers and economic losses. In this context, this work proposes a solution for the detection, dissemination and control of congested roads based on inter-vehicle communication, called INCIDEnT. The main goal of the proposed solution is to reduce the average trip time, CO emissions and fuel consumption by allowing motorists to avoid congested roads. The simulation results show that our proposed solution leads to short delays and a low overhead. Moreover, it is efficient with regard to the coverage of the event and the distance to which the information can be propagated. The findings of the investigation show that the proposed solution leads to (i) high hit rate in the classification of the level of congestion, (ii) a reduction in average trip time, (iii) a reduction in fuel consumption, and (iv) reduced CO emissions.


Subject(s)
Artificial Intelligence , Automobiles , Cities , Communication , Air Pollution/prevention & control , Vehicle Emissions/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL