Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(43): e2205350119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36251994

ABSTRACT

Androgen receptor (AR) signaling is crucial for driving prostate cancer (PCa), the most diagnosed and the second leading cause of death in male patients with cancer in the United States. Androgen deprivation therapy is initially effective in most instances of AR-positive advanced or metastatic PCa. However, patients inevitably develop lethal castration-resistant PCa (CRPC), which is also resistant to the next-generation AR signaling inhibitors. Most CRPCs maintain AR expression, and blocking AR signaling remains a main therapeutic approach. GATA2 is a pioneer transcription factor emerging as a key therapeutic target for PCa because it promotes AR expression and activation. While directly inhibiting GATA2 transcriptional activity remains challenging, enhancing GATA2 degradation is a plausible therapeutic strategy. How GATA2 protein stability is regulated in PCa remains unknown. Here, we show that constitutive photomorphogenesis protein 1 (COP1), an E3 ubiquitin ligase, drives GATA2 ubiquitination at K419/K424 for degradation. GATA2 lacks a conserved [D/E](x)xxVP[D/E] degron but uses alternate BR1/BR2 motifs to bind COP1. By promoting GATA2 degradation, COP1 inhibits AR expression and activation and represses PCa cell and xenograft growth and castration resistance. Accordingly, GATA2 overexpression or COP1 mutations that disrupt COP1-GATA2 binding block COP1 tumor-suppressing activities. We conclude that GATA2 is a major COP1 substrate in PCa and that COP1 promotion of GATA2 degradation is a direct mechanism for regulating AR expression and activation, PCa growth, and castration resistance.


Subject(s)
GATA2 Transcription Factor , Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Ubiquitin-Protein Ligases , Humans , Male , Androgen Antagonists/therapeutic use , Androgens , Cell Line, Tumor , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Int J Nurs Pract ; 25(6): e12776, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31631496

ABSTRACT

BACKGROUND: Central line-associated blood stream infections are accompanied by increased mortality and health care costs. The application of different types of dressings in infection control has not been fully investigated to date. AIM: To assess the effects of two different dressing types on central line-associated bloodstream infections. METHODS: A randomized, nonblinded, controlled trial was conducted. Central lines were randomly allocated to intervention (chlorhexidine gluconate transparent dressing, n = 259) and control groups (standard dressing, n = 215). The central line-associated bloodstream infection rate was assessed. RESULTS: A statistically nonsignificant difference was noted in the overall central line-associated bloodstream infection rates between the two groups. The frequency of dressing changes in the patients with the chlorhexidine gluconate transparent dressing was significantly lower than that in the patients with a standard dressing. The predominant type of infectious microorganisms isolated from the central line-associated bloodstream infection episodes was Gram-negative bacteria (57.2%). Gram-positive bacteria and fungi were noted at lower percentages (28.5% and 14.3%, respectively). CONCLUSION: The use of a chlorhexidine gluconate transparent dressing does not decrease the central line-associated bloodstream infection rate, although it decreases the frequency of dressing changes so may save nursing time.


Subject(s)
Anti-Infective Agents, Local/administration & dosage , Bandages , Catheter-Related Infections/prevention & control , Catheterization, Central Venous , Chlorhexidine/analogs & derivatives , Catheter-Related Infections/microbiology , Chlorhexidine/administration & dosage , Critical Illness , Female , Humans , Intensive Care Units , Male , Middle Aged
3.
Breast Cancer Res ; 20(1): 77, 2018 07 25.
Article in English | MEDLINE | ID: mdl-30045762

ABSTRACT

The authors are retracting this article [1] after an investigation by the Ethics Committee of the Fourth Military Medical University (Xi'an, Shaanxi, China) of the following concerns that had been raised with respect to two of the figures.

4.
Hepatology ; 59(5): 1850-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24002871

ABSTRACT

UNLABELLED: The MYC oncogene is overexpressed in hepatocellular carcinoma (HCC) and has been associated with widespread microRNA (miRNA) repression; however, the underlying mechanisms are largely unknown. Here, we report that the c-Myc oncogenic transcription factor physically interacts with enhancer of zeste homolog 2 (EZH2), a core enzymatic unit of polycomb repressive complex 2 (PRC2). Furthermore, miR-101, an important tumor-suppressive miRNA in human hepatocarcinomas, is epigenetically repressed by PRC2 complex in a c-Myc-mediated manner. miR-101, in turn, inhibits the expression of two subunits of PRC2 (EZH2 and EED), thus creating a double-negative feedback loop that regulates the process of hepatocarcinogenesis. Restoration of miR-101 expression suppresses multiple malignant phenotypes of HCC cells by coordinate repression of a cohort of oncogenes, including STMN1, JUNB, and CXCR7, and further increases expression of endogenous miR-101 by inhibition of PRC2 activation. In addition, co-overexpression of c-Myc and EZH2 in HCC samples was closely associated with lower expression of miR-101 (P < 0.0001) and poorer prognosis of HCC patients (P < 0.01). CONCLUSIONS: c-Myc collaborates with EZH2-containing PRC2 complex in silencing tumor-suppressive miRNAs during hepatocarcinogenesis and provides promising therapeutic candidates for human HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Gene Expression Regulation, Neoplastic , Gene Silencing , Liver Neoplasms/genetics , MicroRNAs/physiology , Proto-Oncogene Proteins c-myc/physiology , Animals , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , DNA Methylation , Enhancer of Zeste Homolog 2 Protein , Humans , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , MicroRNAs/antagonists & inhibitors , Polycomb Repressive Complex 2/metabolism , Polycomb Repressive Complex 2/physiology , Receptors, CXCR/physiology
5.
Int Immunol ; 26(5): 269-81, 2014 May.
Article in English | MEDLINE | ID: mdl-24355664

ABSTRACT

CD4(+) T cells play critical roles in orchestrating adaptive immune responses. Their activation and proliferation are critical steps that occur before they execute their biological functions. Despite the important role of this process, the underlying molecular events are not fully understood. MicroRNAs (miRNAs) have been shown to play important roles in lymphocyte development and function. However, the miRNAs that regulate T-cell differentiation, activation and proliferation are still largely unknown. In our previous study, using a miRNA array, we found that several miRNAs (including miR-202, 33b, 181c, 568 and 576) are differentially expressed between resting and activated CD4(+) T cells. In this study, we focused on the function of miR-568 during CD4(+) T-cell activation. We showed that the expression level of miR-568 decreased during the activation of T cells, including Jurkat cells and human peripheral blood CD4(+) T cells. When Jurkat or human peripheral blood CD4(+) T cells were transfected with miR-568 mimics, cell activation was significantly inhibited, as shown by the inhibited expression of activation markers such as CD25, CD69 and CD154; decreased IL-2 production; and inhibited cell proliferation. Using software predictions and confirmatory experiments, we demonstrated that nuclear factor of activated T cells 5 (NFAT5) is a target of miR-568. Treg cells are an important CD4(+) T-cell subpopulation, so we also evaluated the function of miR-568 in Treg-cell activation and differentiation. We showed that the miR-568 level decreased, while the NFAT5 protein level increased during CD4(+)CD25(+) Treg-cell activation, and the transfection of miR-568 mimics inhibited the NFAT5 expression, inhibited the production of both TGF-ß and IL-10 and also inhibited the proliferation of Treg cells. Our further study showed that over-expression of miR-568 can inhibit Treg-cell differentiation and can inhibit the suppressive effect of these cells on effector cells. In addition, inhibition of NFAT5 by siRNA-mediated knockdown can inhibit the activation and differentiation of Treg cells. These findings reveal that miR-568 can inhibit the activation and function of both CD4(+) T cells and Treg cells by targeting NFAT5. Since miR-568 plays an important role in both CD4(+) T cells and Treg cells, these findings may provide leads for the development of novel treatments for human inflammatory and autoimmune diseases.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , MicroRNAs/immunology , T-Lymphocytes, Regulatory/immunology , Transcription Factors/immunology , 3' Untranslated Regions/genetics , Blotting, Western , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Proliferation , Cells, Cultured , Flow Cytometry , Gene Expression/immunology , HEK293 Cells , Humans , Interleukin-2/immunology , Interleukin-2/metabolism , Jurkat Cells , Luciferases/genetics , Luciferases/metabolism , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , MicroRNAs/genetics , Mutation , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes, Regulatory/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Breast Cancer Res ; 16(5): 454, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25311085

ABSTRACT

INTRODUCTION: The onset of distal metastasis, which underlies the high mortality of breast cancers, warrants substantial studies to depict its molecular basis. Nuclear factor of activated T cells 5 (NFAT5) is upregulated in various malignancies and is critically involved in migration and invasion of neoplastic cells. Nevertheless, the metastasis-related events potentiated by this transcriptional factor and the mechanism responsible for NFAT5 elevation in carcinoma cells remain to be fully elucidated. METHODS: The correlation of NFAT5 with breast cancer invasiveness was investigated in vitro and clinically. The genes transcriptionally activated by NFAT5 were probed and their roles in breast cancer progression were dissected. The upstream regulators of NFAT5 were studied with particular attempt to explore the involvement of non-coding RNAs, and the mechanism underlying the maintenance of NFAT5 expression was deciphered. RESULTS: In metastatic breast cancers, NFAT5 promotes epithelial-mesenchymal transition (EMT) and invasion of cells by switching on the expression of the calcium binding protein S100A4, and facilitates the angiogenesis of breast epithelial cells and thus the development of metastases by transcriptionally activating vascular endothelial growth factor C (VEGF-C). NFAT5 is directly targeted by miR-568, which is in turn suppressed by the long non-coding RNA, Hotair, via a documented in trans gene silencing pattern, that is recruitment of the polycomb complex (Polycomb Repressive Complex 2; PRC2) and LSD1, and consequently methylation of histone H3K27 and demethylation of H3K4 on the miR-568 loci. CONCLUSION: This study unravels a detailed role of NFAT5 in mediating metastatic signaling, and provides broad insights into the involvement of Hotair, in particular, by transcriptionally regulating the expression of microRNA(s), in the metastasis of breast cancers.


Subject(s)
Breast Neoplasms/metabolism , Lung Neoplasms/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , S100 Proteins/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Binding Sites , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Human Umbilical Vein Endothelial Cells/physiology , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lymphatic Metastasis , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , RNA Interference , S100 Calcium-Binding Protein A4 , S100 Proteins/genetics , Transcription Factors/genetics , Up-Regulation , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism
7.
Math Biosci ; 368: 109132, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128645

ABSTRACT

Engaging in smoking not only leads to substantial health risks but also imposes considerable financial burdens. To deepen our understanding of the mechanisms behind smoking transmission and to address the tobacco epidemic, we examined a five-dimensional smoking epidemic model that accounts for different degrees of smoking under both deterministic and stochastic conditions. In the deterministic case, we determine the basic reproduction number, analyze the stability of equilibria with and without smoking, and investigate the existence of saddle-node bifurcation. Our analysis reveals that the basic reproduction number cannot completely determine the existence of smoking, and the model possesses bistability, indicating its dynamic is susceptible to interference from environmental noises. In the stochastic case, we establish sufficient conditions for the ergodic stationary distribution and the elimination of smokers by constructing appropriate Lyapunov functions. Numerical simulations suggest that the effects of inevitable random fluctuations in the natural environment on controlling the smoking epidemic may be beneficial, harmful, or negligible, which are closely related to the noise intensities, initial smoking population sizes, and the effective exposure rate of smoking transmission (ß). Given the uncontrollable nature of environmental random effects, effective smoking control strategies can be achieved by: (1) accurate monitoring of initial smoking population sizes, and (2) implementing effective measures to reduce ß. Therefore, it is both effective and feasible to implement a complete set of strong MPOWER measures to control smoking prevalence.


Subject(s)
Epidemics , Computer Simulation , Stochastic Processes , Basic Reproduction Number , Smoking/epidemiology
8.
NPJ Microgravity ; 10(1): 66, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844756

ABSTRACT

Atomic clocks with higher frequency stability and accuracy than traditional space-borne atomic clocks are the cornerstone of long-term autonomous operation of space-time-frequency systems. We proposed a space cold atoms clock based on an intracavity cooling scheme, which captures cold atoms at the center of a microwave cavity and then executes in situ interactions between the cold atoms and microwaves. As a result of the microgravity environment in space, the cold atoms can interact with the microwaves for a longer time, which aids in realizing a high-precision atomic clock in space. This paper presents the overall design, operational characteristics, and reliability test results of the space atomic clock based on the intracavity cooling scheme designed for the operation onboard the China space station. In addition, the engineering prototype performance of the space cold atoms microwave clock is also presented. The ground test results for the clock show a fractional frequency stability of 1.1 × 10-12 τ-1/2 reaching 2.5 × 10-15 at 200,000 s, providing solid technical and data support for its future operation in orbit.

9.
Gastroenterology ; 141(6): 2076-2087.e6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21925125

ABSTRACT

BACKGROUND & AIMS: Human epidermal growth factor receptor 2 (HER2) (neu/ERBB2) is overexpressed on many types of cancer cells, including gastric cancer cells; HER2 overexpression has been associated with metastasis and poor prognosis. We investigated the mechanisms by which HER2 regulates cell migration and invasion. METHODS: HER2 expression or activity was reduced in gastric cancer cell lines using small interfering RNAs or the monoclonal antibody, trastuzumab. We identified proteins that interact with HER2 or microRNAs (miRNAs) involved in HER2 signaling. We used various software programs to identify miRNAs that regulate factors in the HER2 signaling pathway. We analyzed expression patterns of these miRNAs in gastric cancer cell lines and tumor samples from patients. RESULTS: We found that CD44 binds directly to HER2, which up-regulates the expression of metastasis-associated protein-1, induces deacetylation of histone H3 lysine 9, and suppresses transcription of microRNA139 (miR-139) to inhibit expression of its target gene, C-X-C chemokine receptor type 4 (CXCR4). Knockdown of HER2 and CD44 reduced invasive activity of cultured gastric cancer cells and suppressed tumor growth in nude mice. Lymph node metastasis was associated with high levels of HER2, CD44, and CXCR4, and reduced levels of miR-139 in human metastatic gastric tumors. Cultures of different types of metastatic cancer cells with histone deacetylase inhibitors and/or DNA methyltransferase resulted in up-regulation of miR-139. CONCLUSIONS: HER2 interaction with CD44 up-regulates CXCR4 by inhibiting expression of miR-139, at the epigenetic level, in gastric cancer cells. These findings indicate how HER2 signaling might promote gastric tumor progression and metastasis.


Subject(s)
Epigenesis, Genetic/genetics , Hyaluronan Receptors/metabolism , MicroRNAs/genetics , Receptor, ErbB-2/metabolism , Receptors, CXCR4/metabolism , Stomach Neoplasms/genetics , Animals , Blotting, Northern , Cell Movement , DNA Primers/chemistry , Gene Expression Regulation, Neoplastic , Gene Silencing , Humans , Mice , Mice, Nude , Neoplasm Metastasis , Nucleic Acid Amplification Techniques , Tumor Cells, Cultured , Up-Regulation
10.
Biochem Biophys Res Commun ; 420(4): 787-92, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22459450

ABSTRACT

Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colon cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and ß-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and ß-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting ß-catenin, suggesting its application in prognosis prediction and cancer treatment.


Subject(s)
Cell Proliferation , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , beta Catenin/genetics , Cell Line, Tumor , Gene Targeting , Humans , MicroRNAs/genetics , Transcription, Genetic
11.
Chin Med J (Engl) ; 135(15): 1814-1820, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35833658

ABSTRACT

BACKGROUND: Feeding intolerance (FI) among intensive care unit (ICU) patients undergoing early continuous enteral nutrition (EN) is related to poor outcomes. This study aimed to explore the prevalence and risk factors of FI in ICU patients. METHODS: We retrospectively enrolled 1057 patients who received early continuous EN via a nasogastric tube between January 2014 and August 2019. The prevalence of FI during the first 7 days of ICU stay was calculated, and the risk factors were investigated using multivariate logistic regression analysis. RESULTS: The prevalence of FI during the first 7 days of ICU stay was 10.95%. FI occurred in 159 of 1057 (15.04%) patients on ICU day 2, 114 of 977 (11.67%) patients on ICU day 3, and 86 of 715 (12.03%) patients on ICU day 7. Mechanical ventilation (MV) (odds ratio [OR]: 1.928, 95% confidence interval [CI]: 1.064-3.493, P  = 0.03) was an independent risk factor for FI defined by a gastric residual volume (GRV) of 200 mL and/or vomiting, and acute renal failure (OR: 3.445, 95% CI: 1.115-10.707, P  = 0.032) was an independent risk factor of FI defined by a GRV of 500 mL and/or vomiting. Continuous renal replacement therapy (CRRT) was an independent predictor regardless of the FI defined by a GRV of 200 mL (OR: 2.064, 95% CI: 1.233-3.456, P  = 0.006) or 500 mL (OR: 6.199, 95% CI: 2.108-18.228, P  = 0.001) in the ICU patients. CONCLUSIONS: FI occurs frequently in early ICU days, especially in patients receiving MV and CRRT. However, further investigation of a consensus definition of FI and risk factors is still warranted in future studies.


Subject(s)
Enteral Nutrition , Intensive Care Units , Critical Illness , Enteral Nutrition/adverse effects , Humans , Infant, Newborn , Prevalence , Prospective Studies , Retrospective Studies , Risk Factors , Vomiting/epidemiology , Vomiting/etiology
12.
Nat Commun ; 13(1): 245, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35017531

ABSTRACT

About 15-20% of breast cancer (BCa) is triple-negative BCa (TNBC), a devastating disease with limited therapeutic options. Aberrations in the PI3K/PTEN signaling pathway are common in TNBC. However, the therapeutic impact of PI3K inhibitors in TNBC has been limited and the mechanism(s) underlying this lack of efficacy remain elusive. Here, we demonstrate that a large subset of TNBC expresses significant levels of MAPK4, and this expression is critical for driving AKT activation independent of PI3K and promoting TNBC cell and xenograft growth. The ability of MAPK4 to bypass PI3K for AKT activation potentially provides a direct mechanism regulating tumor sensitivity to PI3K inhibition. Accordingly, repressing MAPK4 greatly sensitizes TNBC cells and xenografts to PI3K blockade. Altogether, we conclude that high MAPK4 expression defines a large subset or subtype of TNBC responsive to MAPK4 blockage. Targeting MAPK4 in this subset/subtype of TNBC both represses growth and sensitizes tumors to PI3K blockade.


Subject(s)
Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Triple Negative Breast Neoplasms/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, SCID , Mitogen-Activated Protein Kinases/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphoinositide-3 Kinase Inhibitors/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays
13.
Nat Sci Sleep ; 13: 579-590, 2021.
Article in English | MEDLINE | ID: mdl-34007230

ABSTRACT

PURPOSE: Cognitive impairment is an important complication of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), the main pathophysiological characteristics of OSA, is closely related to cognitive dysfunction and may be mediated by alpha-7 nicotinic acetylcholine receptors (α7nAChR). This study investigated the effects and clarified the mechanisms of α7nAChR on the cognitive function of mice with CIH. METHODS: Thirty CD-1 mice were randomly divided into room air (RA), CIH-2 weeks (CIH2W), and CIH-4 weeks (CIH4W) groups. Cognitive function was evaluated by novel object recognition (NOR) and Morris water maze (MWM) tests after exposure. Then, 104 CD-1 mice were exposed to CIH for 4 weeks and randomly divided into four groups: CIH4W (control), with dimethyl sulfoxide (DMSO) (sham), with α7nAChR-specific agonist PNU-282987 (PNU), and with α7nAChR-specific inhibitor methyllycaconitine and PNU-282987 (MLA+PNU). In addition to the evaluation of cognitive function, apoptotic bodies in the hippocampus were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, changes in p-CREB and BDNF were detected by immunohistochemistry, while those of ERK1/2, CREB, PGC-1α, FNDC5, and BDNF were detected by Western blotting in the hippocampal tissues of the mice. RESULTS: Compared to the CIH2W and RA groups, the CIH4W group showed cognitive dysfunction in the NOR and MWM tests. The changes in cognitive dysfunction were alleviated by PNU-282987; furthermore, MLA pretreatment offset the effect. In hippocampal tissues, TUNEL assays showed decreased apoptotic cells, immunohistochemical staining showed increased expressions of p-CREB and BDNF. The expression levels of p-ERK1/2/t-ERK1/2, p-CREB/t-CREB, PGC-1α, FNDC5, and BDNF were increased after PNU-282987 injection. CONCLUSION: Four weeks of CIH caused cognitive dysfunction in mice. Activating α7nAChR might ameliorate this dysfunction by upregulating the ERK1/2/CREB signaling pathway; enhancing PGC-1α, FNDC5, and BDNF expression levels; and reducing cell apoptosis in the hippocampal tissue of mice.

14.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33586682

ABSTRACT

Prostate cancer (PCa) is the second leading cause of cancer death in American men. Androgen receptor (AR) signaling is essential for PCa cell growth/survival and remains a key therapeutic target for lethal castration-resistant PCa (CRPC). GATA2 is a pioneer transcription factor crucial for inducing AR expression/activation. We recently reported that MAPK4, an atypical MAPK, promotes tumor progression via noncanonical activation of AKT. Here, we demonstrated that MAPK4 activated AR by enhancing GATA2 transcriptional expression and stabilizing GATA2 protein through repression of GATA2 ubiquitination/degradation. MAPK4 expression correlated with AR activation in human CRPC. Concerted activation of both GATA2/AR and AKT by MAPK4 promoted PCa cell proliferation, anchorage-independent growth, xenograft growth, and castration resistance. Conversely, knockdown of MAPK4 decreased activation of both AR and AKT and inhibited PCa cell and xenograft growth, including castration-resistant growth. Both GATA2/AR and AKT activation were necessary for MAPK4 tumor-promoting activity. Interestingly, combined overexpression of GATA2 plus a constitutively activated AKT was sufficient to drive PCa growth and castration resistance, shedding light on an alternative, MAPK4-independent tumor-promoting pathway in human PCa. We concluded that MAPK4 promotes PCa growth and castration resistance by cooperating parallel pathways of activating GATA2/AR and AKT and that MAPK4 is a novel therapeutic target in PCa, especially CRPC.


Subject(s)
MAP Kinase Signaling System , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Helicases/metabolism , Receptors, Androgen/metabolism , Animals , Cell Line, Tumor , HEK293 Cells , Humans , Male , Mice , Mice, SCID , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Proto-Oncogene Proteins c-akt/genetics , RNA Helicases/genetics , Receptors, Androgen/genetics
15.
Pulm Circ ; 11(3): 20458940211029899, 2021.
Article in English | MEDLINE | ID: mdl-34290858

ABSTRACT

The Pulmonary Arterial Hypertension Symptoms and Impact Questionnaire (PAH-SYMPACT) is a PAH-specific patient-reported outcome scale assessing patients' quality of life from four aspects: cardiopulmonary symptoms, cardiovascular symptoms, physical impacts and cognitive/emotional impacts. This study aimed to validate the Chinese version of PAH-SYMPACT and explore its relationship with risk stratification in patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH). In addition, 75 patients with CTD-PAH confirmed by right heart catheterization were invited to complete questionnaires including PAH-SYMPACT, the 36-item Medical Outcomes Study Short Form Survey (SF-36) and EuroQol five dimensions questionnaire (EQ-5D). The demographic, clinical, laboratory and treatment data were collected. The endpoint was treatment goal achievement status in 6-12 months after completing the questionnaires, defined as an integrated outcome. Participants' mean age was 36.4 ± 11.9 years and the mean pulmonary arterial pressure was 38.9 ± 13.67 mmHg. The reliability of the PAH-SYMPACT domains ranged from 0.83 to 0.88. Results of factor analysis basically conformed the original PAH-SYMPACT. The treatment goal achievement (TGA) status in 6-12 months was significantly associated with physical impacts scores (odds ratio: 0.180, 95% confidence interval: 0.036-0.908, P=0.038). The Chinese version of PAH-SYMPACT is a reliable measurement to evaluate quality of life in CTD-PAH patients and is also a potential predictor of patient's condition change in routine clinical practice.

16.
Neurosignals ; 18(1): 1-8, 2010.
Article in English | MEDLINE | ID: mdl-19786810

ABSTRACT

It has been reported that autoimmune inflammatory processes in human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), may induce an alteration in neurogenesis. Studies with transgenic EAE mice have demonstrated an enhancement of neurogenesis in the subventricular zone (SVZ). In contrast, a reduction of stem cell proliferation in the same region has been observed by Pluchino et al. [Brain 2008;131:2564-2578] in myelin oligodendrocyte glycoprotein (MOG)-induced EAE mice. We immunized female C57BL/6 mice with MOG 35-55 peptide and successfully developed chronic/nonremitting EAE, which is believed to be analogous to the progressive form of MS. On day 21 postimmunization, coronal brain sections were collected and stained with anti-5-bromo-2'-deoxyuridine (BrdU) antibody. By counting the number of BrdU-labeled cells, we demonstrated that the neural stem/progenitor cell (NSC/NPC) proliferation decreased in the SVZ, which basically confirms the study of Pluchino et al. on the changes in the SVZ. A reduction of NSC/NPC proliferation also occurred in the hippocampal subgranular zone of the dentate gyrus. The hippocampus is well known to be an important region involved in learning and memory; thus, our finding may offer a possible explanation for the cognitive impairment in human chronic MS.


Subject(s)
Cell Proliferation , Cerebral Ventricles/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Neural Stem Cells/physiology , Animals , Brain/pathology , Bromodeoxyuridine/metabolism , CD4 Antigens/metabolism , Cell Proliferation/drug effects , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Glycoproteins , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein , Peptide Fragments , Pertussis Toxin , Spinal Cord/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Time Factors
17.
Pathog Dis ; 78(5)2020 07 01.
Article in English | MEDLINE | ID: mdl-32678442

ABSTRACT

Aspergillus fumigatus is one of the most common fungal infections involved in the pulmonary diseases. Hypoxia-inducible factor-1α (HIF-1α) is important for antifungal immunity. Diabetes is a risk factor of pulmonary A. fumigatus infection and could affect the expression of HIF-1α. The aim of this investigation was to evaluate the role of HIF-1α in pulmonary A. fumigatus infection in diabetes. In murine model, we found diabetic mice had aggravated pulmonary A. fumigatus infection and declined expression of HIF-1α following pulmonary A. fumigatus infection. And these changes could be corrected by dimethyloxalylglycine (DMOG), the agonist of HIF-1α. In cell experiment, after A. fumigatus stimulation, hyperglycemic state was with a decreased HIF-1α expression and increased NLRP3/IL-1ß signal pathway. The percentages of Th1 and Treg cells decreased, while percentages of Th2 and Th17 increased in hyperglycemic group. DMOG suppressed A. fumigatus-stimulated NLRP3 and IL-1ß expressions in hyperglycemic group and corrected Th and Treg cells differentiation. These regulatory effects of DMOG could be dampened by activating of NLRP3. These data indicated that hyperglycemia suppressed the regulatory effect of HIF-1α in pulmonary A. fumigatus infection, which can affect Th and Treg cells differentiation by regulating the NLRP3/IL-1ß signal pathway.


Subject(s)
Amino Acids, Dicarboxylic/pharmacology , Aspergillus fumigatus/drug effects , Hyperglycemia/microbiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pulmonary Aspergillosis/microbiology , Animals , Aspergillus fumigatus/pathogenicity , Cell Differentiation/drug effects , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Disease Models, Animal , Gene Expression Regulation/drug effects , Host-Pathogen Interactions , Hyperglycemia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pulmonary Aspergillosis/complications , Signal Transduction , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Regulatory/drug effects
18.
Nat Sci Sleep ; 12: 749-758, 2020.
Article in English | MEDLINE | ID: mdl-33117010

ABSTRACT

BACKGROUND: Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway collapse during sleep. The contraction of upper airway dilator muscles plays a crucial role in maintaining UA patency. Chronic intermittent hypoxia (CIH) is the most important pathophysiological process of OSA. Exposure to CIH induced not only the damage of dilator muscles but also the plasticity of the muscles. This study aimed to dynamically assess the influence of CIH on the upper airway. METHODS: The experiments were performed on 44 rats. They were randomly divided into a normoxia (NO) group (n=22) and CIH group (n=22). In each group (n=6, respectively), EMG, transcranial magnetic stimulation (TMS) response, and critical pressure (Pcrit) value were recorded on day 0 (the day before exposure), and the 7th, 14th, 21st, and 28th day of air/CIH exposure. For each group, 16 rats were used for transmission electron microscopy observations on day 0, and the 7th, 14th and 28th day of air/CIH exposure (n=4 for every time point). RESULTS: Compared to the NO group at the same point, the CIH group showed a damaged ultrastructure of genioglossus, increased activity of genioglossus corticomotor area, and increased Pcrit of the upper airway from the 7th to the 28th day of CIH. Increased EMG activity occurred at the 14th day of CIH and lasted for 2 weeks. CONCLUSION: The elevated genioglossus corticomotor excitability in response to the CIH could not counterbalance the damage effect of CIH on upper airway dilator muscles, which ultimately increased the collapsibility of the upper airway.

19.
Biol Res ; 42(2): 249-60, 2009.
Article in English | MEDLINE | ID: mdl-19746271

ABSTRACT

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that mediates both NADH-oxidizing and caspase-independent apoptosis. Further, the proapoptotic activity of AIF is located in the C-terminus of AIF, although the precise minimum sequence responsible for apoptosis induction remains to be investigated. In the present study, we generated two truncated AIFs, AIFDelta1-480-FLAG, which is a FLAG-tagged C-terminal peptide comprising amino acids from 481 to 613, and AIF360-480 containing amino acids from 360 to 480 of AIF. We used confocal microscopy to demonstrate that both the truncated proteins are expressed and located in the cytoplasm of transfected cells. AIFDelta1-480 but not AIF360-480 induces apoptosis in transfected cells. We also found that the expression of AIFDelta1-480 could initiate the release of cytochrome c from the mitochondria. The suppression of caspase-9 via siRNA blocked the proapoptotic activity of AIFDelta1-480. Therefore, AIFDelta1-480 is sufficient for inducing caspase-9-dependent apoptotic signaling, probably by promoting the release of cytochrome c. At last, we generated a chimeric immuno-AIFDelta1-480 protein, which comprised an HER2 antibody, a Pseudomonas exotoxin A translocation domain and AIFDelta1-480. Human Jurkat cells transfected with the immuno-AIFDeltal-480 gene could express and secrete the chimeric protein, which selectively recognize and kill HER2-overexpressing tumor cells. Our study demonstrates the feasibility of the immuno-AIFDeltal-480 gene as a novel approach to treating HER2-overexpressing cancers.


Subject(s)
Alcohol Oxidoreductases/drug effects , Apoptosis Inducing Factor/pharmacology , Apoptosis/drug effects , DNA, Complementary/drug effects , DNA-Binding Proteins/drug effects , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Apoptosis/genetics , Apoptosis Inducing Factor/genetics , Apoptosis Inducing Factor/metabolism , Blotting, Western , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Fluorescent Antibody Technique, Indirect , Humans , Jurkat Cells , Microscopy, Confocal , Reverse Transcriptase Polymerase Chain Reaction , Transfection
20.
Bull Environ Contam Toxicol ; 82(5): 554-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19156345

ABSTRACT

Several environmentally persistent chemicals have been found to be capable of disrupting crustacean molting. Considering the importance of molting in the life of crustaceans, there is a need to develop a molecular biomarker that can reflect the disrupting effects of contaminants on ecdysteroid signaling in crustaceans. N-acetyl-beta-glucosaminidase (NAG) is a chitinolytic enzyme found in crustacean epidermis. The results of the present investigation show that the transcription of NAG gene in the epidermis of the fiddler crab, Uca pugilator, is inducible by the molting hormone 20-hydroxyecdysone, which validates the use of NAG mRNA as a biomarker for molt-disrupting effects of xenobiotics.


Subject(s)
Acetylglucosaminidase/biosynthesis , Brachyura/enzymology , Ecdysterone/pharmacology , Molting/drug effects , RNA, Messenger/analysis , Acetylglucosaminidase/genetics , Amino Acid Sequence , Animals , Biomarkers/analysis , Brachyura/drug effects , Brachyura/growth & development , Endocrine Disruptors/pharmacology , Environmental Pollutants/pharmacology , Epidermis/enzymology , Female , Gene Expression Regulation/drug effects , Molecular Sequence Data , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL