Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 481
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 21(1): 30-41, 2020 01.
Article in English | MEDLINE | ID: mdl-31819254

ABSTRACT

NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.


Subject(s)
Acute Kidney Injury/immunology , Apolipoprotein C-III/immunology , Caspase 8/metabolism , Kidney Diseases/immunology , Monocytes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Acute Kidney Injury/pathology , Adaptor Proteins, Signal Transducing , Animals , Apolipoprotein C-III/genetics , Cell Line , Disease Models, Animal , HEK293 Cells , Humans , Inflammasomes/immunology , Inflammation/genetics , Inflammation/immunology , Kidney Diseases/pathology , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Reactive Oxygen Species/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism
3.
Osteoarthritis Cartilage ; 32(6): 690-701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442768

ABSTRACT

OBJECTIVE: To investigate whether tibiofemoral alignment influences early knee osteoarthritis (OA). We hypothesized that varus overload exacerbates early degenerative osteochondral changes, and that valgus underload diminishes early OA. METHOD: Normal, over- and underload were induced by altering alignment via high tibial osteotomy in adult sheep (n = 8 each). Simultaneously, OA was induced by partial medial anterior meniscectomy. At 6 weeks postoperatively, OA was examined in five individual subregions of the medial tibial plateau using Kellgren-Lawrence grading, quantification of macroscopic OA, semiquantitative histopathological OA and immunohistochemical type-II collagen, ADAMTS-5, and MMP-13 scoring, biochemical determination of DNA and proteoglycan contents, and micro-computed tomographic evaluation of the subchondral bone. RESULTS: Multivariate analyses revealed that OA cartilaginous changes had a temporal priority over subchondral bone changes. Underload inhibited early cartilage degeneration in a characteristic topographic pattern (P ≥ 0.0983 vs. normal), in particular below the meniscal damage, avoided alterations of the subarticular spongiosa (P ≥ 0.162 vs. normal), and prevented the disturbance of otherwise normal osteochondral correlations. Overload induced early alterations of the subchondral bone plate microstructure towards osteopenia, including significantly decreased percent bone volume and increased bone surface-to-volume ratio (all P ≤ 0.0359 vs. normal). CONCLUSION: The data provide high-resolution evidence that tibiofemoral alignment modulates early OA induced by a medial meniscus injury in adult sheep. Since underload inhibits early OA, these data also support the clinical value of strategies to reduce the load in an affected knee compartment to possibly decelerate structural OA progression.


Subject(s)
Cartilage, Articular , Osteoarthritis, Knee , Tibia , Animals , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Sheep , Tibia/diagnostic imaging , Tibia/pathology , Cartilage, Articular/pathology , Cartilage, Articular/diagnostic imaging , Female , X-Ray Microtomography , Osteotomy , Femur/diagnostic imaging , Femur/pathology , Matrix Metalloproteinase 13/metabolism , Meniscectomy , Collagen Type II/metabolism , Menisci, Tibial/surgery , Menisci, Tibial/diagnostic imaging , Arthritis, Experimental/pathology , Arthritis, Experimental/diagnostic imaging , Disease Models, Animal , ADAMTS5 Protein/metabolism
4.
Arch Toxicol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955864

ABSTRACT

Many fatal intoxications have been reported in connection with the consumption of newer, highly potent synthetic cannabinoids. Yet, a possible postmortem redistribution (PMR) might complicate reliable interpretation of analytical results. Thus, it is necessary to investigate the PMR-potential of new synthetic cannabinoids. The pig model has already proven to be suitable for this purpose. Hence, the aim of this study was to study the PMR of the synthetic cannabinoid 5F-MDMB-P7AICA and its main metabolite 5F-MDMB-P7AICA-dimethylbutanoic acid (DBA). 5F-MDMB-P7AICA (200 µg/kg body weight) was administered by inhalation to anesthetized and ventilated pigs. At the end of the experiment, the animals were euthanized and stored at room temperature for 3 days. Tissue and body fluid samples were taken daily. Specimens were analyzed after solid phase extraction using a standard addition method and LC-MS/MS, blood was quantified after protein precipitation using a validated method. In perimortem samples, 5F-MDMB-P7AICA was found mainly in adipose tissue, bile fluid, and duodenum contents. Small amounts of 5F-MDMB-P7AICA were found in blood, muscle, brain, liver, and lung. High concentrations of DBA were found primarily in bile fluid, duodenum contents, urine, and kidney/perirenal fat tissue. In the remaining tissues, rather low amounts could be found. In comparison to older synthetic cannabinoids, PMR of 5F-MDMB-P7AICA was less pronounced. Concentrations in blood also appear to remain relatively stable at a low level postmortem. Muscle, kidney, fat, and duodenum content are suitable alternative matrices for the detection of 5F-MDMB-P7AICA and DBA, if blood specimens are not available. In conclusion, concentrations of 5F-MDMB-P7AICA and its main metabolite DBA are not relevantly affected by PMR.

5.
Int J Mol Sci ; 25(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38255932

ABSTRACT

The treatment of wounds using the body's own resources is a promising approach to support the physiological regenerative process. To advance this concept, we evaluated the effect of nanofat (NF) on wound healing. For this purpose, full-thickness skin defects were created in dorsal skinfold chambers of wild-type mice. These defects were filled with NF generated from the inguinal subcutaneous adipose tissue of green fluorescent protein (GFP)+ donor mice, which was stabilized using platelet-rich plasma (PRP). Empty wounds and wounds solely filled with PRP served as controls. Wound closure, vascularization and formation of granulation tissue were repeatedly analyzed using stereomicroscopy, intravital fluorescence microscopy, histology and immunohistochemistry over an observation period of 14 days. PRP + NF-treated wounds exhibited accelerated vascularization and wound closure when compared to controls. This was primarily due to the fact that the grafted NF contained a substantial fraction of viable GFP+ vascular and lymph vessel fragments, which interconnected with the GFP- vessels of the host tissue. Moreover, the switch from inflammatory M1- to regenerative M2-polarized macrophages was promoted in PRP + NF-treated wounds. These findings indicate that NF markedly accelerates and improves the wound healing process and, thus, represents a promising autologous product for future wound management.


Subject(s)
Neovascularization, Pathologic , Wound Healing , Animals , Mice , Skin , Granulation Tissue , Green Fluorescent Proteins/genetics , Microscopy, Fluorescence
6.
Int J Mol Sci ; 25(2)2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38255829

ABSTRACT

Fracture healing in the aged is associated with a reduced healing capacity, which often results in delayed healing or non-union formation. Many factors may contribute to this deterioration of bone regeneration, including a reduced 'angiogenic trauma response'. The phosphodiesterase-3 (PDE-3) inhibitor cilostazol has been shown to exert pro-angiogenic and pro-osteogenic effects in preclinical studies. Therefore, we herein analyzed in a stable closed femoral fracture model whether this compound also promotes fracture healing in aged mice. Forty-two aged CD-1 mice (age: 16-18 months) were daily treated with 30 mg/kg body weight cilostazol (n = 21) or vehicle (control, n = 21) by oral gavage. At 2 and 5 weeks after fracture, the femora were analyzed by X-ray, biomechanics, micro-computed tomography (µCT), histology, immunohistochemistry, and Western blotting. These analyses revealed a significantly increased bending stiffness at 2 weeks (2.2 ± 0.4 vs. 4.3 ± 0.7 N/mm) and an enhanced bone formation at 5 weeks (4.4 ± 0.7 vs. 9.1 ± 0.7 mm3) in cilostazol-treated mice when compared to controls. This was associated with a higher number of newly formed CD31-positive microvessels (3.3 ± 0.9 vs. 5.5 ± 0.7 microvessels/HPF) as well as an elevated expression of phosphoinositide-3-kinase (PI3K) (3.6 ± 0.8 vs. 17.4 ± 5.5-pixel intensity × 104) and runt-related transcription factor (RUNX)2 (6.4 ± 1.2 vs. 18.2 ± 2.7-pixel intensity × 104) within the callus tissue. These findings indicate that cilostazol accelerates fracture healing in aged mice by stimulating angiogenesis and the expression of PI3K and RUNX2. Hence, cilostazol may represent a promising compound to promote bone regeneration in geriatric patients.


Subject(s)
Femoral Fractures , Phosphatidylinositol 3-Kinase , Animals , Female , Male , Mice , Angiogenesis , Cilostazol/pharmacology , Core Binding Factor Alpha 1 Subunit/genetics , Fracture Healing , Phosphatidylinositol 3-Kinases , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 3 Inhibitors/therapeutic use , X-Ray Microtomography
7.
Biophys J ; 122(8): 1526-1537, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36932676

ABSTRACT

The distribution of red blood cells (RBCs) in the microcirculation determines the oxygen delivery and solute transport to tissues. This process relies on the partitioning of RBCs at successive bifurcations throughout the microvascular network, and it has been known since the last century that RBCs partition disproportionately to the fractional blood flow rate, therefore leading to heterogeneity of the hematocrit (i.e., volume fraction of RBCs in blood) in microvessels. Usually, downstream of a microvascular bifurcation, the vessel branch with a higher fraction of blood flow receives an even higher fraction of RBC flux. However, both temporal and time-average deviations from this phase-separation law have been observed in recent studies. Here, we quantify how the microscopic behavior of RBC lingering (i.e., RBCs temporarily residing near the bifurcation apex with diminished velocity) influences their partitioning, through combined in vivo experiments and in silico simulations. We developed an approach to quantify the cell lingering at highly confined capillary-level bifurcations and demonstrate that it correlates with deviations of the phase-separation process from established empirical predictions by Pries et al. Furthermore, we shed light on how the bifurcation geometry and cell membrane rigidity can affect the lingering behavior of RBCs; e.g., rigid cells tend to linger less than softer ones. Taken together, RBC lingering is an important mechanism that should be considered when studying how abnormal RBC rigidity in diseases such as malaria and sickle-cell disease could hinder the microcirculatory blood flow or how the vascular networks are altered under pathological conditions (e.g., thrombosis, tumors, aneurysm).


Subject(s)
Erythrocytes , Models, Cardiovascular , Hematocrit , Microcirculation/physiology , Blood Flow Velocity/physiology
8.
EMBO J ; 38(15): e100871, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31304984

ABSTRACT

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Subject(s)
Melanoma/pathology , Membrane Proteins/metabolism , NFATC Transcription Factors/metabolism , Oxidation-Reduction , Protein Disulfide-Isomerases/metabolism , Thioredoxins/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Disease Progression , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/metabolism , Membrane Proteins/genetics , Mice , Mitochondria/metabolism , NADPH Oxidase 4/metabolism , Neoplasm Transplantation , Protein Transport , Reactive Oxygen Species/metabolism , Signal Transduction , Survival Analysis , Thioredoxins/genetics , Up-Regulation
9.
J Transl Med ; 21(1): 844, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996876

ABSTRACT

BACKGROUND: Non-union formation still represents a major burden in trauma and orthopedic surgery. Moreover, aged patients are at an increased risk for bone healing failure. Parathyroid hormone (PTH) has been shown to accelerate fracture healing in young adult animals. However, there is no information whether PTH also stimulates bone regeneration in atrophic non-unions in the aged. Therefore, the aim of the present study was to analyze the effect of PTH on bone regeneration in an atrophic non-union model in aged CD-1 mice. METHODS: After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. The animals were treated daily with either 200 mg/kg body weight PTH 1-34 (n = 17) or saline (control; n = 17) subcutaneously. Bone regeneration was analyzed by means of X-ray, biomechanics, micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses. RESULTS: In PTH-treated animals bone formation was markedly improved when compared to controls. This was associated with an increased bending stiffness as well as a higher number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD31-positive microvessels within the callus tissue. Furthermore, PTH-treated aged animals showed a decreased inflammatory response, characterized by a lower number of MPO-positive granulocytes and CD68-positive macrophages within the bone defects when compared to controls. Additional Western blot analyses demonstrated a significantly higher expression of cyclooxygenase (COX)-2 and phosphoinositide 3-kinase (PI3K) in PTH-treated mice. CONCLUSION: Taken together, these findings indicate that PTH is an effective pharmacological compound for the treatment of non-union formation in aged animals.


Subject(s)
Bone Regeneration , Phosphatidylinositol 3-Kinases , Humans , Mice , Animals , Aged , X-Ray Microtomography , Parathyroid Hormone/pharmacology , Parathyroid Hormone/therapeutic use , Fracture Healing
10.
J Transl Med ; 21(1): 607, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37684656

ABSTRACT

Non-union formation represents a major complication in trauma and orthopedic surgery. The phosphodiesterase-5 (PDE-5) inhibitor sildenafil has been shown to exert pro-angiogenic and pro-osteogenic effects in vitro and in vivo. Therefore, the aim of the present study was to analyze the impact of sildenafil in an atrophic non-union model in mice. After creation of a 1.8 mm segmental defect, mice femora were stabilized by pin-clip fixation. Bone regeneration was analyzed by means of X-ray, biomechanics, photoacoustic and micro-computed tomography (µCT) imaging as well as histological, immunohistochemical and Western blot analyses at 2, 5 and 10 weeks after surgery. The animals were treated daily with either 5 mg/kg body weight sildenafil (n = 35) or saline (control; n = 35) per os. Bone formation was markedly improved in defects of sildenafil-treated mice when compared to controls. This was associated with a higher bending stiffness as well as an increased number of CD31-positive microvessels and a higher oxygen saturation within the callus tissue. Moreover, the bone defects of sildenafil-treated animals contained more tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and CD68-positive macrophages and exhibited a higher expression of the pro-angiogenic and pro-osteogenic markers cysteine rich protein (CYR)61 and vascular endothelial growth factor (VEGF) when compared to controls. These findings demonstrate that sildenafil acts as a potent stimulator of angiogenesis and bone regeneration in atrophic non-unions.


Subject(s)
Phosphodiesterase 5 Inhibitors , Vascular Endothelial Growth Factor A , Animals , Mice , Sildenafil Citrate/pharmacology , Sildenafil Citrate/therapeutic use , Phosphodiesterase 5 Inhibitors/pharmacology , Phosphodiesterase 5 Inhibitors/therapeutic use , Cyclic Nucleotide Phosphodiesterases, Type 5 , X-Ray Microtomography , Bone Regeneration , Atrophy
11.
Int J Mol Sci ; 24(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762161

ABSTRACT

Endometriosis is a common gynecological disease which is characterized by endometriotic lesions outside the uterine cavity. In this study, we investigated whether the presence of pre-existing endometriotic lesions promotes the development of new lesions due to the exchange of cells and an altered peritoneal environment. For this purpose, uterine tissue samples from FVB/N wild-type donor mice were transplanted simultaneously or time-delayed with samples from transgenic FVB-Tg(CAG-luc-GFP)L2G85Chco/J donor mice into the abdominal cavity of FVB/N wild-type recipient mice. The formation of endometriotic lesions was analyzed by means of high-resolution ultrasound, bioluminescence imaging, histology and immunohistochemistry. Moreover, immune cells and inflammatory factors in the peritoneal fluid were assessed by flow cytometry and a cytokine array. These analyses revealed that the growth of newly developing endometriotic lesions is promoted by the presence of pre-existing ones. This is not due to an exchange of cells between both lesion types but rather caused by peritoneal inflammation induced by already established lesions. These findings indicate that, among other pathogenic mechanisms, the chronic nature of endometriosis may be driven by a lesion-induced inflammatory milieu in the peritoneal cavity, which creates favorable conditions for the development of new lesions.

12.
Circulation ; 144(11): 893-908, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34192892

ABSTRACT

BACKGROUND: Cardiovascular diseases and chronic kidney disease (CKD) are highly prevalent, aggravate each other, and account for substantial mortality. Both conditions are characterized by activation of the innate immune system. The alarmin interleukin-1α (IL-1α) is expressed in a variety of cell types promoting (sterile) systemic inflammation. The aim of the present study was to examine the role of IL-1α in mediating inflammation in the setting of acute myocardial infarction (AMI) and CKD. METHODS: We assessed the expression of IL-1α on the surface of monocytes from patients with AMI and patients with CKD and determined its association with atherosclerotic cardiovascular disease events during follow-up in an explorative clinical study. Furthermore, we assessed the inflammatory effects of IL-1α in several organ injury models in Il1a-/- and Il1b-/- mice and investigated the underlying mechanisms in vitro in monocytes and endothelial cells. RESULTS: IL-1α is strongly expressed on the surface of monocytes from patients with AMI and CKD compared with healthy controls. Higher IL-1α surface expression on monocytes from patients with AMI and CKD was associated with a higher risk for atherosclerotic cardiovascular disease events, which underlines the clinical relevance of IL-1α. In mice, IL-1α, but not IL-1ß, mediates leukocyte-endothelial adhesion as determined by intravital microscopy. IL-1α promotes accumulation of macrophages and neutrophils in inflamed tissue in vivo. Furthermore, IL-1α on monocytes stimulates their homing at sites of vascular injury. A variety of stimuli such as free fatty acids or oxalate crystals induce IL-1α surface expression and release by monocytes, which then mediates their adhesion to the endothelium via IL-1 receptor-1. IL-1α also promotes expression of the VCAM-1 (vascular cell adhesion molecule-1) on endothelial cells, thereby fostering the adhesion of circulating leukocytes. IL-1α induces inflammatory injury after experimental AMI, and abrogation of IL-1α prevents the development of CKD in oxalate or adenine-fed mice. CONCLUSIONS: IL-1α represents a key mediator of leukocyte-endothelial adhesion and inflammation in AMI and CKD. Inhibition of IL-1α may serve as a novel anti-inflammatory treatment strategy.


Subject(s)
Cell Adhesion/physiology , Endothelial Cells/metabolism , Interleukin-1alpha/metabolism , Myocardial Infarction/drug therapy , Renal Insufficiency, Chronic/drug therapy , Animals , Cell Adhesion/drug effects , Endothelium/metabolism , Humans , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1alpha/pharmacology , Mice , Monocytes/metabolism , Myocardial Infarction/metabolism , Neutrophils/metabolism , Renal Insufficiency, Chronic/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
13.
Angiogenesis ; 25(3): 279-290, 2022 08.
Article in English | MEDLINE | ID: mdl-35165821

ABSTRACT

Despite major research efforts to elucidate mechanisms of non-union formation, failed fracture healing remains a common complication in orthopedic surgery. Adequate vascularization has been recognized as a crucial factor for successful bone regeneration, as newly formed microvessels guarantee the supply of the callus tissue with vital oxygen, nutrients, and growth factors. Accordingly, a vast number of preclinical studies have focused on the development of vascularization strategies to stimulate fracture repair. However, recent evidence suggests that stimulation of blood vessel formation is an oversimplified approach to support bone regeneration. This review discusses the role of vascularization during bone regeneration and delineates a phenomenon, for which we coin the term "the vascularization paradox of non-union-formation". This view is based on the results of a variety of experimental studies that suggest that the callus tissue of non-unions is indeed densely vascularized and that pro-angiogenic mediators, such as vascular endothelial growth factor, are sufficiently expressed at the facture site. By gaining further insights into the molecular and cellular basis of non-union vascularization, it may be possible to develop more optimized treatment approaches or even prevent the non-union formation in the future.


Subject(s)
Fracture Healing , Vascular Endothelial Growth Factor A , Bone Regeneration , Fracture Healing/physiology , Humans , Microvessels , Neovascularization, Pathologic , Neovascularization, Physiologic
14.
Acta Orthop ; 93: 466-471, 2022 04 25.
Article in English | MEDLINE | ID: mdl-35478260

ABSTRACT

BACKGROUND AND PURPOSE: In fracture healing, ischemia caused by vascular injuries, chronic vascular diseases, and metabolic comorbidities is one of the major risk factors for delayed union and non-union formation. To gain novel insights into the molecular and cellular pathology of ischemic fracture healing, appropriate animal models are needed. Murine models are of particular interest, as they allow to study the molecular aspects of fracture healing due to the availability of both a large number of murine antibodies and gene-targeted animals. Thus, we present the development of an ischemic fracture healing model in mice. MATERIAL AND METHODS: After inducing a mild ischemia by double ligature of the deep femoral artery in CD-1 mice, the ipsilateral femur was fractured by a 3-point bending device and stabilized by screw osteosynthesis. In control animals, the femur was fractured and stabilized without the induction of ischemia. The femora were analyzed at 2 and 5 weeks after fracture healing by means of radiology, biomechanics, histology, and histomorphometry. RESULTS: The surgically induced ischemia delayed and impaired the process of fracture healing. This was indicated by a lower Goldberg score, decreased bending stiffness, and reduced bone callus formation in the ischemic animals when compared with the controls. INTERPRETATION: We introduce a novel ischemic femoral fracture healing model in mice, which is characterized by delayed bone healing. In future, the use of this model may allow both the elucidation of the molecular aspects of ischemic fracture healing and the study of novel treatment strategies.


Subject(s)
Femoral Fractures , Fracture Healing , Animals , Bony Callus , Femoral Fractures/surgery , Fracture Fixation, Internal , Humans , Ischemia , Mice
15.
Biophys J ; 120(3): 432-439, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33359171

ABSTRACT

The microvascular networks in the body of vertebrates consist of the smallest vessels such as arterioles, capillaries, and venules. The flow of red blood cells (RBCs) through these networks ensures the gas exchange in as well as the transport of nutrients to the tissues. Any alterations in this blood flow may have severe implications on the health state. Because the vessels in these networks obey dimensions similar to the diameter of RBCs, dynamic effects on the cellular scale play a key role. The steady progression in the numerical modeling of RBCs, even in complex networks, has led to novel findings in the field of hemodynamics, especially concerning the impact and the dynamics of lingering events when a cell meets a branch of the network. However, these results are yet to be matched by a detailed analysis of the lingering experiments in vivo. To quantify this lingering effect in in vivo experiments, this study analyzes branching vessels in the microvasculature of Syrian golden hamsters via intravital microscopy and the use of an implanted dorsal skinfold chamber. It also presents a detailed analysis of these lingering effects of cells at the apex of bifurcating vessels, affecting the temporal distribution of plasmatic zones of blood flow in the branches and even causing a partial blockage in severe cases.


Subject(s)
Capillaries , Microvessels , Animals , Arterioles , Blood Flow Velocity , Cricetinae , Microcirculation
16.
Glia ; 69(8): 1987-2005, 2021 08.
Article in English | MEDLINE | ID: mdl-33934399

ABSTRACT

Growing evidence indicates that innate immune molecules regulate microglial activation in Alzheimer's disease (AD); however, their effects on amyloid pathology and neurodegeneration remain inconclusive. Here, we conditionally deleted one allele of myd88 gene specifically in microglia in APP/PS1-transgenic mice by 6 months and analyzed AD-associated pathologies by 9 months. We observed that heterozygous deletion of myd88 gene in microglia decreased cerebral amyloid ß (Aß) load and improved cognitive function of AD mice, which was correlated with reduced number of microglia in the brain and inhibited transcription of inflammatory genes, for example, tnf-α and il-1ß, in both brain tissues and individual microglia. To investigate mechanisms underlying the pathological improvement, we observed that haploinsufficiency of MyD88 increased microglial recruitment toward Aß deposits, which might facilitate Aß clearance. Microglia with haploinsufficient expression of MyD88 also increased vasculature in the brain of APP/PS1-transgenic mice, which was associated with up-regulated transcription of osteopontin and insulin-like growth factor genes in microglia. Moreover, MyD88-haploinsufficient microglia elevated protein levels of LRP1 in cerebral capillaries of APP/PS1-transgenic mice. Cell culture experiments further showed that treatments with interleukin-1ß decreased LRP1 expression in pericytes. In summary, haploinsufficiency of MyD88 in microglia at a late disease stage attenuates pro-inflammatory activation and amyloid pathology, prevents the impairment of microvasculature and perhaps also protects LRP1-mediated Aß clearance in the brain of APP/PS1-transgenic mice, all of which improves neuronal function of AD mice.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Haploinsufficiency , Mice , Mice, Transgenic , Microglia/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
17.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L958-L968, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33759577

ABSTRACT

Chronic obstructive lung disease (COPD) and lung cancer are both caused by smoking and often occur as comorbidity. The programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) axis is an important canonic immunoregulatory pathway, and antibodies that specifically block PD-1 or PD-L1 have demonstrated efficacy as therapeutic agents for non-small cell lung cancer. The role of the PD-1/PD-L1 axis in the pathogenesis of COPD is unknown. Here, we analyzed the function of the PD-1/PD-L1 axis in preclinical COPD models and evaluated the concentrations of PD-1 and PD-L1 in human serum and bronchoalveolar lavage (BAL) fluids as biomarkers for COPD. Anti-PD-1 treatment decreased lung damage and neutrophilic inflammation in mice chronically exposed to cigarette smoke (CS) or nontypeable Haemophilus influenzae (NTHi). Ex vivo stimulated macrophages obtained from anti-PD-1-treated mice released reduced amounts of inflammatory cytokines. PD-L1 concentrations correlated positively with PD-1 concentrations in human serum and BAL fluids. Lung sections obtained from patients with COPD stained positive for PD-L1. Our data indicate that the PD-1/PD-L1 axis is involved in developing inflammation and tissue destruction in COPD. Inflammation-induced activation of the PD-1 pathway may contribute to disease progression.


Subject(s)
Lung/metabolism , Macrophages, Alveolar/metabolism , Neutrophils/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Pulmonary Disease, Chronic Obstructive/metabolism , Animals , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/metabolism , Disease Models, Animal , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Macrophages, Alveolar/pathology , Male , Mice , Neutrophils/pathology , Programmed Cell Death 1 Receptor/metabolism , Prospective Studies , Pulmonary Disease, Chronic Obstructive/pathology
18.
Angiogenesis ; 24(3): 613-630, 2021 08.
Article in English | MEDLINE | ID: mdl-33655414

ABSTRACT

Angiogenesis crucially contributes to various diseases, such as cancer and diabetic retinopathy. Hence, anti-angiogenic therapy is considered as a powerful strategy against these diseases. Previous studies reported that the acyclic monoterpene linalool exhibits anticancer, anti-inflammatory and anti-oxidative activity. However, the effects of linalool on angiogenesis still remain elusive. Therefore, we investigated the action of (3R)-(-)-linalool, a main enantiomer of linalool, on the angiogenic activity of human dermal microvascular endothelial cells (HDMECs) by a panel of angiogenesis assays. Non-cytotoxic doses of linalool significantly inhibited HDMEC proliferation, migration, tube formation and spheroid sprouting. Linalool also suppressed the vascular sprouting from rat aortic rings. In addition, Matrigel plugs containing linalool exhibited a significantly reduced microvessel density 7 days after implantation into BALB/c mice. Mechanistic analyses revealed that linalool promotes the phosphorylation of extracellular signal-regulated kinase (ERK), downregulates the intracellular level of adenosine triphosphate (ATP) and activates the transient receptor potential cation channel subfamily M (melastatin) member (TRPM)8 in HDMECs. Inhibition of ERK signaling, supplementation of ATP and blockade of TRPM8 significantly counteracted linalool-suppressed HDMEC spheroid sprouting. Moreover, ATP supplementation completely reversed linalool-induced ERK phosphorylation. In addition, linalool-induced ERK phosphorylation inhibited the expression of bone morphogenetic protein (BMP)-2 and linalool-induced TRPM8 activation caused the inhibition of ß1 integrin/focal adhesion kinase (FAK) signaling. These findings indicate an anti-angiogenic effect of linalool, which is mediated by downregulating intracellular ATP levels and activating TRPM8.


Subject(s)
Acyclic Monoterpenes/pharmacology , Adenosine Triphosphate/metabolism , Dermis , Down-Regulation/drug effects , Endothelial Cells/metabolism , Microvessels/metabolism , Neovascularization, Physiologic/drug effects , TRPM Cation Channels , Animals , Cell Line , Dermis/blood supply , Dermis/metabolism , Endothelial Cells/transplantation , Heterografts , Humans , MAP Kinase Signaling System/drug effects , Mice, Inbred BALB C , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism
19.
Haematologica ; 106(8): 2224-2232, 2021 08 01.
Article in English | MEDLINE | ID: mdl-32675228

ABSTRACT

It has been suggested that B-cell receptor (BCRs) stimulation by specific antigens plays a pathogenic role in diffuse large B-cell lymphoma (DLBCL). Here, it was the aim to screen for specific reactivities of DLBCL-BCRs in the spectrum of autoantigens and antigens of infectious origin. Arsenite resistance protein 2 (Ars2) was identified as the BCR target of 3/5 ABC-type DLBCL cell lines and 2/11 primary DLBCL cases. Compared to controls, Ars2 was hypo-phosphorylated exclusively in cases and cell lines with Ars2-specific BCRs. In a validation cohort, hypo-phosphorylated Ars2 was found in 8/31 ABC-type, but only 1/20 germinal center B cell (GBC)-like type DLBCL. Incubation with Ars2 induced BCR-pathway activation and increased proliferation, while an Ars2/ETA-toxin conjugate induced killing of cell lines with Ars2-reactive BCRs. Ars2 appears to play a role in a subgroup of ABC-type DLBCLs. Moreover, transformed DLBCL lines with Ars2-reactive BCRs still show growth advantage after incubation with Ars2. These results provide knowledge about the pathogenic role of a specific antigen stimulating the BCR pathway in DLCBL.


Subject(s)
Autoantigens , Lymphoma, Large B-Cell, Diffuse , B-Lymphocytes , Humans , Lymphoma, Large B-Cell, Diffuse/genetics , Receptors, Antigen, B-Cell/genetics , Signal Transduction
20.
FASEB J ; 34(7): 9628-9649, 2020 07.
Article in English | MEDLINE | ID: mdl-32475008

ABSTRACT

Alzheimer's disease (AD) is the leading cause of dementia with very limited therapeutic options. Amyloid ß (Aß) and phosphorylated Tau (p-Tau) are key pathogenic molecules in AD. P38α-MAPK is specifically activated in AD lesion sites. However, its effects on AD pathogenesis, especially on p-Tau-associated brain pathology, and the underlying molecular mechanisms remain unclear. We mated human APP-transgenic mice and human P301S Tau-transgenic mice with mapk14-floxed and neuron-specific Cre-knock-in mice. We observed that deletion of p38α-MAPK specifically in neurons improves the cognitive function of both 9-month-old APP and Tau-transgenic AD mice, which is associated with decreased Aß and p-Tau load in the brain. We further used next-generation sequencing to analyze the gene transcription in brains of p38α-MAPK deficient and wild-type APP-transgenic mice, which indicated that deletion of p38α-MAPK regulates the transcription of calcium homeostasis-related genes, especially downregulates the expression of grin2a, a gene encoding NMDAR subunit NR2A. Cell culture experiments further verified that deletion of p38α-MAPK inhibits NMDA-triggered calcium influx and neuronal apoptosis. Our systemic studies of AD pathogenic mechanisms using both APP- and Tau-transgenic mice suggested that deletion of neuronal p38α-MAPK attenuates AD-associated brain pathology and protects neurons in AD pathogenesis. This study supports p38α-MAPK as a novel target for AD therapy.


Subject(s)
Alzheimer Disease/prevention & control , Cognition Disorders/prevention & control , Disease Models, Animal , Inflammation/prevention & control , Mitogen-Activated Protein Kinase 14/deficiency , Neurons/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Cognition Disorders/metabolism , Cognition Disorders/pathology , Female , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphorylation , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL