Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nature ; 587(7835): 605-609, 2020 11.
Article in English | MEDLINE | ID: mdl-33177710

ABSTRACT

Expansion of anthropogenic noise and night lighting across our planet1,2 is of increasing conservation concern3-6. Despite growing knowledge of physiological and behavioural responses to these stimuli from single-species and local-scale studies, whether these pollutants affect fitness is less clear, as is how and why species vary in their sensitivity to these anthropic stressors. Here we leverage a large citizen science dataset paired with high-resolution noise and light data from across the contiguous United States to assess how these stimuli affect reproductive success in 142 bird species. We find responses to both sensory pollutants linked to the functional traits and habitat affiliations of species. For example, overall nest success was negatively correlated with noise among birds in closed environments. Species-specific changes in reproductive timing and hatching success in response to noise exposure were explained by vocalization frequency, nesting location and diet. Additionally, increased light-gathering ability of species' eyes was associated with stronger advancements in reproductive timing in response to light exposure, potentially creating phenological mismatches7. Unexpectedly, better light-gathering ability was linked to reduced clutch failure and increased overall nest success in response to light exposure, raising important questions about how responses to sensory pollutants counteract or exacerbate responses to other aspects of global change, such as climate warming. These findings demonstrate that anthropogenic noise and light can substantially affect breeding bird phenology and fitness, and underscore the need to consider sensory pollutants alongside traditional dimensions of the environment that typically inform biodiversity conservation.


Subject(s)
Birds/physiology , Lighting/adverse effects , Noise/adverse effects , Reproduction/radiation effects , Animals , Birds/classification , Citizen Science , Clutch Size/radiation effects , Confined Spaces , Datasets as Topic , Diet/veterinary , Ecosystem , Female , Geographic Mapping , Male , Nesting Behavior/physiology , Nesting Behavior/radiation effects , Ocular Physiological Phenomena/radiation effects , Reproduction/physiology , Species Specificity , United States , Vocalization, Animal/radiation effects
2.
J Acoust Soc Am ; 142(5): 3257, 2017 11.
Article in English | MEDLINE | ID: mdl-29195467

ABSTRACT

It is difficult and expensive to match the sensitivity of the most sensitive vertebrate ears with off-the-shelf microphones due to the self-noise of the sensor. The extremely small apertures of microelectromechanical microphones create options to use horn waveguides to amplify sound prior to transduction without resulting in an unacceptably narrow directivity. Substantial gain can be achieved at wavelengths larger than the horn. An analytical model of an exponential horn embedded in a rigid spherical housing was formulated to describe the gain relative to a free-field receiver as a function of frequency and angle of arrival. For waves incident on-axis, the analytical model provided an accurate estimate of gain at high frequencies as validated by experimental measurement. Numerical models, using the equivalent source method, can account for higher order modes and comprehensively describe the acoustic scattering within and around the horn for waves arriving from any direction. Results show the directivity of horn receivers were adequately described by the analytical model up to a critical wavelength, and the mechanisms of deviation in gain at high frequencies and large angles of arrival were identified.

3.
PeerJ ; 12: e16592, 2024.
Article in English | MEDLINE | ID: mdl-38313034

ABSTRACT

Environmental noise knows no boundaries, affecting even protected areas. Noise pollution, originating from both external and internal sources, imposes costs on these areas. It is associated with adverse health effects, while natural sounds contribute to cognitive and emotional improvements as ecosystem services. When it comes to parks, individual visitors hold unique perceptions of soundscapes, which can be shaped by various factors such as their motivations for visiting, personal norms, attitudes towards specific sounds, and expectations. In this study, we utilized linear models and geospatial data to evaluate how visitors' personal norms and attitudes, the park's acoustic environment, visitor counts, and the acoustic environment of visitors' neighborhoods influenced their perception of soundscapes at Muir Woods National Monument. Our findings indicate that visitors' subjective experiences had a greater impact on their perception of the park's soundscape compared to purely acoustic factors like sound level of the park itself. Specifically, we found that motivations to hear natural sounds, interference caused by noise, sensitivity to noise, and the sound levels of visitors' home neighborhoods influenced visitors' perception of the park's soundscape. Understanding how personal factors shape visitors' soundscape perception can assist urban and non-urban park planners in effectively managing visitor experiences and expectations.


Subject(s)
Ecosystem , Recreation , Conservation of Natural Resources , Noise/adverse effects , Perception
4.
Nat Ecol Evol ; 4(4): 502-511, 2020 04.
Article in English | MEDLINE | ID: mdl-32203474

ABSTRACT

Global expansion of human activities is associated with the introduction of novel stimuli, such as anthropogenic noise, artificial lights and chemical agents. Progress in documenting the ecological effects of sensory pollutants is weakened by sparse knowledge of the mechanisms underlying these effects. This severely limits our capacity to devise mitigation measures. Here, we integrate knowledge of animal sensory ecology, physiology and life history to articulate three perceptual mechanisms-masking, distracting and misleading-that clearly explain how and why anthropogenic sensory pollutants impact organisms. We then link these three mechanisms to ecological consequences and discuss their implications for conservation. We argue that this framework can reveal the presence of 'sensory danger zones', hotspots of conservation concern where sensory pollutants overlap in space and time with an organism's activity, and foster development of strategic interventions to mitigate the impact of sensory pollutants. Future research that applies this framework will provide critical insight to preserve the natural sensory world.


Subject(s)
Ecology , Noise , Animals , Human Activities , Humans
5.
Environ Epidemiol ; 3(4): e056, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31538137

ABSTRACT

BACKGROUND: Environmental noise has been linked to negative health outcomes, like poor sleep, poor mental health, and cardiovascular disease, and likely accounts for more than 1 million disability-adjusted life years annually in Western Europe. Adolescence may be a particularly sensitive period for noise exposure due to an increased need for sleep, failure to meet sleep guidelines, and increased risk for first onset of some mental health disorders. However, the potential health effects of living in high-noise environments have not been studied in US adolescents, rarely in European adolescents, and mental health outcomes studied have not corresponded to diagnoses from the Diagnostic and Statistical Manual of Mental Disorders (DSM). METHODS: Using a US-based nationally representative survey of urban adolescents (N = 4,508), we estimated associations of day-night average sound levels exceeding the US Environmental Protection Agency's 55 decibel limit with sleep outcomes and lifetime mental health DSM diagnoses. We implemented doubly robust targeted minimum loss-based estimation coupled with propensity score matching to account for numerous potential adolescent, household, and environmental confounders. RESULTS: Living in a high- versus low-noise Census block group was associated with later bedtimes on weeknights (0.48 hours, 95% confidence interval [CI] = -0.15, 1.12) and weekend nights (0.65 hours, 95% CI = 0.37, 0.93), but not with total hours slept. Associations between living in a high- versus low-noise Census block group and mental disorders were mixed, with wide CIs, and not robust to sensitivity analyses. CONCLUSIONS: We find evidence for an association between residence in a high-noise area and later bedtimes among urban adolescents but no consistent evidence of such an association with mental health disorders.

6.
Environ Health Perspect ; 125(7): 077017, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28749369

ABSTRACT

BACKGROUND: Prior research has reported disparities in environmental exposures in the United States, but, to our knowledge, no nationwide studies have assessed inequality in noise pollution. OBJECTIVES: We aimed to a) assess racial/ethnic and socioeconomic inequalities in noise pollution in the contiguous United States; and b) consider the modifying role of metropolitan level racial residential segregation. METHODS: We used a geospatial sound model to estimate census block group­level median (L50) nighttime and daytime noise exposure and 90th percentile (L10) daytime noise exposure. Block group variables from the 2006­2010 American Community Survey (ACS) included race/ethnicity, education, income, poverty, unemployment, homeownership, and linguistic isolation. We estimated associations using polynomial terms in spatial error models adjusted for total population and population density. We also evaluated the relationship between race/ethnicity and noise, stratified by levels of metropolitan area racial residential segregation, classified using a multigroup dissimilarity index. RESULTS: Generally, estimated nighttime and daytime noise levels were higher for census block groups with higher proportions of nonwhite and lower-socioeconomic status (SES) residents. For example, estimated nighttime noise levels in urban block groups with 75% vs. 0% black residents were 46.3 A-weighted decibels (dBA) [interquartile range (IQR): 44.3­47.8 dBA] and 42.3 dBA (IQR: 40.4­45.5 dBA), respectively. In urban block groups with 50% vs. 0% of residents living below poverty, estimated nighttime noise levels were 46.9 dBA (IQR: 44.7­48.5 dBA) and 44.0 dBA (IQR: 42.2­45.5 dBA), respectively. Block groups with the highest metropolitan area segregation had the highest estimated noise exposures, regardless of racial composition. Results were generally consistent between urban and suburban/rural census block groups, and for daytime and nighttime noise and robust to different spatial weight and neighbor definitions. CONCLUSIONS: We found evidence of racial/ethnic and socioeconomic differences in model-based estimates of noise exposure throughout the United States. Additional research is needed to determine if differences in noise exposure may contribute to health disparities in the United States. https://doi.org/10.1289/EHP898


Subject(s)
Environmental Exposure , Health Status Disparities , Noise , Social Segregation , Socioeconomic Factors , Cross-Sectional Studies , Ethnicity , Humans , Models, Theoretical , Residence Characteristics , Social Class , United States
SELECTION OF CITATIONS
SEARCH DETAIL