Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Mol Cell ; 83(8): 1200-1203, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37084710

ABSTRACT

Daniela Rhodes spoke with Molecular Cell about the discovery of the double helical structure of DNA in 1953 and its impact on modern science. She discusses how she started working with DNA and chromatin as a structural biologist, some of the landmark studies that were inspired by the double helix, and the exciting challenges ahead.


Subject(s)
Chromatin , DNA , DNA/genetics , DNA/chemistry , Chromatin/genetics , Nucleic Acid Conformation
2.
Nature ; 623(7987): 643-651, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938774

ABSTRACT

In eukaryotes, repetitive DNA sequences are transcriptionally silenced through histone H3 lysine 9 trimethylation (H3K9me3). Loss of silencing of the repeat elements leads to genome instability and human diseases, including cancer and ageing1-3. Although the role of H3K9me3 in the establishment and maintenance of heterochromatin silencing has been extensively studied4-6, the pattern and mechanism that underlie the partitioning of parental H3K9me3 at replicating DNA strands are unknown. Here we report that H3K9me3 is preferentially transferred onto the leading strands of replication forks, which occurs predominantly at long interspersed nuclear element (LINE) retrotransposons (also known as LINE-1s or L1s) that are theoretically transcribed in the head-on direction with replication fork movement. Mechanistically, the human silencing hub (HUSH) complex interacts with the leading-strand DNA polymerase Pol ε and contributes to the asymmetric segregation of H3K9me3. Cells deficient in Pol ε subunits (POLE3 and POLE4) or the HUSH complex (MPP8 and TASOR) show compromised H3K9me3 asymmetry and increased LINE expression. Similar results were obtained in cells expressing a MPP8 mutant defective in H3K9me3 binding and in TASOR mutants with reduced interactions with Pol ε. These results reveal an unexpected mechanism whereby the HUSH complex functions with Pol ε to promote asymmetric H3K9me3 distribution at head-on LINEs to suppress their expression in S phase.


Subject(s)
Gene Silencing , Histones , Long Interspersed Nucleotide Elements , Lysine , S Phase , Humans , DNA Replication , Histones/chemistry , Histones/metabolism , Long Interspersed Nucleotide Elements/genetics , Lysine/metabolism , Methylation
3.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34521752

ABSTRACT

CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.


Subject(s)
Carrier Proteins/genetics , Cell Cycle Proteins/genetics , DNA Damage/genetics , Lymphoma/genetics , Lymphoma/pathology , Phosphorylation/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Mice , Mutation/genetics , Translocation, Genetic/genetics
4.
J Immunol ; 206(6): 1228-1239, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33536256

ABSTRACT

Ataxia-telangiectasia mutated (ATM) kinase is a master regulator of the DNA damage response, and loss of ATM leads to primary immunodeficiency and greatly increased risk for lymphoid malignancies. The FATC domain is conserved in phosphatidylinositol-3-kinase-related protein kinases (PIKKs). Truncation mutation in the FATC domain (R3047X) selectively compromised reactive oxygen species-induced ATM activation in cell-free assays. In this article, we show that in mouse models, knock-in ATM-R3057X mutation (Atm⁠ RX ⁠, corresponding to R3047X in human ATM) severely compromises ATM protein stability and causes T cell developmental defects, B cell Ig class-switch recombination defects, and infertility resembling ATM-null. The residual ATM-R3057X protein retains minimal yet functional measurable DNA damage-induced checkpoint activation and significantly delays lymphomagenesis in Atm⁠ RX/RX ⁠ mice compared with Atm⁠ -/- ⁠. Together, these results support a physiological role of the FATC domain in ATM protein stability and show that the presence of minimal residual ATM-R3057X protein can prevent growth retardation and delay tumorigenesis without restoring lymphocyte development and fertility.


Subject(s)
Lymphocytes/immunology , Lymphoma/genetics , Protein Domains/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Carcinogenesis/genetics , Carcinogenesis/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Codon, Nonsense , Disease Models, Animal , Gene Knock-In Techniques , Humans , Lymphocytes/pathology , Lymphoma/immunology , Lymphoma/pathology , Male , Mice , Mice, Knockout , Protein Stability , V(D)J Recombination/genetics , V(D)J Recombination/immunology
5.
Mol Cell ; 60(6): 835-46, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26698660

ABSTRACT

The essential functions of the conserved Smc5/6 complex remain elusive. To uncover its roles in genome maintenance, we established Saccharomyces cerevisiae cell-cycle-regulated alleles that enable restriction of Smc5/6 components to S or G2/M. Unexpectedly, the essential functions of Smc5/6 segregated fully and selectively to G2/M. Genetic screens that became possible with generated alleles identified processes that crucially rely on Smc5/6 specifically in G2/M: metabolism of DNA recombination structures triggered by endogenous replication stress, and replication through natural pausing sites located in late-replicating regions. In the first process, Smc5/6 modulates remodeling of recombination intermediates, cooperating with dissolution activities. In the second, Smc5/6 prevents chromosome fragility and toxic recombination instigated by prolonged pausing and the fork protection complex, Tof1-Csm3. Our results thus dissect Smc5/6 essential roles and reveal that combined defects in DNA damage tolerance and pausing site-replication cause recombination-mediated DNA lesions, which we propose to drive developmental and cancer-prone disorders.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication , DNA, Fungal/metabolism , Genes, Essential , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Cell Cycle , Cell Cycle Proteins/genetics , DNA Damage , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Genetic Testing , Recombination, Genetic , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
6.
Mol Cell ; 60(2): 268-79, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26439300

ABSTRACT

Elucidating the individual and collaborative functions of genome maintenance factors is critical for understanding how genome duplication is achieved. Here, we investigate a conserved scaffold in budding yeast, Rtt107, and its three partners: a SUMO E3 complex, a ubiquitin E3 complex, and Slx4. Biochemical and genetic findings show that Rtt107 interacts separately with these partners and contributes to their individual functions, including a role in replisome sumoylation. We also provide evidence that Rtt107 associates with replisome components, and both itself and its associated E3s are important for replicating regions far from initiation sites. Corroborating these results, replication defects due to Rtt107 loss and genotoxic sensitivities in mutants of Rtt107 and its associated E3s are rescued by increasing replication initiation events through mutating two master repressors of late origins, Mrc1 and Mec1. These findings suggest that Rtt107 functions as a multi-functional platform to support replication progression with its partner E3 enzymes.


Subject(s)
DNA Replication , Endodeoxyribonucleases/genetics , Gene Expression Regulation, Fungal , Nuclear Proteins/genetics , SUMO-1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Ubiquitin-Protein Ligases/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Endodeoxyribonucleases/metabolism , Genome, Fungal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mutation , Nuclear Proteins/metabolism , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sumoylation , Ubiquitin-Protein Ligases/metabolism
7.
Genes Dev ; 29(19): 2067-80, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26443850

ABSTRACT

Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.


Subject(s)
DNA Helicases/genetics , DNA Replication/genetics , Nuclear Proteins/metabolism , Recombination, Genetic/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Cell Cycle Proteins , Chromatin/metabolism , DNA Damage/genetics , DNA Helicases/metabolism , Nuclear Proteins/genetics , Point Mutation , Protein Binding , Rad51 Recombinase/metabolism
8.
EMBO J ; 33(4): 327-40, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24473148

ABSTRACT

DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.


Subject(s)
Chromosomes, Fungal/ultrastructure , DNA Damage , DNA, Fungal/genetics , High Mobility Group Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/metabolism , Chromatids/genetics , Chromatids/ultrastructure , Chromatin/ultrastructure , Chromosomes, Fungal/genetics , DNA Helicases/metabolism , DNA Replication , DNA, Cruciform , DNA, Fungal/drug effects , Genomic Instability , High Mobility Group Proteins/chemistry , High Mobility Group Proteins/genetics , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Proliferating Cell Nuclear Antigen/metabolism , Replication Protein A/metabolism , S Phase , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38559022

ABSTRACT

PARP1&2 enzymatic inhibitors (PARPi) are promising cancer treatments. But recently, their use has been hindered by unexplained severe anemia and treatment-related leukemia. In addition to enzymatic inhibition, PARPi also trap PARP1&2 at DNA lesions. Here, we report that unlike Parp2 -/- mice, which develop normally, mice expressing catalytically-inactive Parp2 (E534A, Parp2 EA/EA ) succumb to Tp53- and Chk2 -dependent erythropoietic failure in utero , mirroring Lig1 -/- mice. While DNA damage mainly activates PARP1, we demonstrate that DNA replication activates PARP2 robustly. PARP2 is selectively recruited and activated by 5'-phosphorylated nicks (5'p-nicks) between Okazaki fragments, typically resolved by Lig1. Inactive PARP2, but not its active form or absence, impedes Lig1- and Lig3-mediated ligation, causing dose-dependent replication fork collapse, particularly harmful to erythroblasts with ultra-fast forks. This PARylation-dependent structural function of PARP2 at 5'p-nicks explains the detrimental effects of PARP2 inhibition on erythropoiesis, revealing the mechanism behind the PARPi-induced anemia and leukemia, especially those with TP53/CHK2 loss. Significance: This work shows that the hematological toxicities associated with PARP inhibitors stem not from impaired PARP1 or PARP2 enzymatic activity but rather from the presence of inactive PARP2 protein. Mechanistically, these toxicities reflect a unique role of PARP2 at 5'-phosphorylated DNA nicks during DNA replication in erythroblasts.

10.
J Biol Chem ; 287(14): 11374-83, 2012 Mar 30.
Article in English | MEDLINE | ID: mdl-22303010

ABSTRACT

The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1-6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase important for Smc5 sumoylation. Characterization of two temperature-sensitive mutants, nse5-ts1 and nse5-ts2, demonstrated the importance of Nse5 within the Smc5/6 complex for its stability and functionality at forks during hydroxyurea-induced replication stress. Both NSE5 alleles showed a marked reduction in Smc5 sumoylation to levels lower than those observed with mms21-11, a mutant of Mms21 that is deficient in SUMO ligase activity. However, a phenotypic comparison of nse5-ts1 and nse5-ts2 revealed a separation of importance between Smc5 sumoylation and the function of the Smc5/6 complex during replication. Only cells carrying the nse5-ts1 allele exhibited defects such as dissociation of the replisome from stalled forks, formation of fork-associated homologous recombination intermediates, and hydroxyurea sensitivity that is additive with mms21-11. These defects are attributed to a failure in Smc5/6 localization to forks in nse5-ts1 cells. Overall, these data support the premise that Nse5 is important for vital interactions between components within the Smc5/6 complex, and for its functionality during replication stress.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA Replication , DNA, Fungal/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Stress, Physiological , Alleles , Chromosomal Proteins, Non-Histone/genetics , DNA Replication/drug effects , DNA, Fungal/chemistry , Hydroxyurea/pharmacology , Mutation , Phenotype , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Saccharomyces cerevisiae Proteins/genetics , Stress, Physiological/drug effects , Sumoylation/drug effects , Ubiquitin-Protein Ligases/metabolism
11.
bioRxiv ; 2023 May 27.
Article in English | MEDLINE | ID: mdl-37292881

ABSTRACT

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.

12.
Nat Commun ; 14(1): 3618, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37336885

ABSTRACT

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.


Subject(s)
DNA Replication , Protein Serine-Threonine Kinases , S Phase , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Proliferation , DNA Damage
13.
Trends Cell Biol ; 32(2): 91-93, 2022 02.
Article in English | MEDLINE | ID: mdl-34953661

ABSTRACT

Recent structural studies have revealed the atomic details of how the DNA-PKcs kinase protects DNA ends, recruits and activates Artemis endonuclease for end-processing, and phosphorylates itself for end-ligation, revealing the molecular details from end-processing to end-ligation, two critical phases of the non-homologous end-joining (NHEJ) DNA-double strand break repair pathway.


Subject(s)
DNA End-Joining Repair , DNA-Binding Proteins , DNA/metabolism , DNA Breaks, Double-Stranded , DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/genetics , Endonucleases/metabolism , Humans
14.
Nat Commun ; 12(1): 2111, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833229

ABSTRACT

Smc5/6 is essential for genome structural integrity by yet unknown mechanisms. Here we find that Smc5/6 co-localizes with the DNA crossed-strand processing complex Sgs1-Top3-Rmi1 (STR) at genomic regions known as natural pausing sites (NPSs) where it facilitates Top3 retention. Individual depletions of STR subunits and Smc5/6 cause similar accumulation of joint molecules (JMs) composed of reversed forks, double Holliday Junctions and hemicatenanes, indicative of Smc5/6 regulating Sgs1 and Top3 DNA processing activities. We isolate an intra-allelic suppressor of smc6-56 proficient in Top3 retention but affected in pathways that act complementarily with Sgs1 and Top3 to resolve JMs arising at replication termination. Upon replication stress, the smc6-56 suppressor requires STR and Mus81-Mms4 functions for recovery, but not Srs2 and Mph1 helicases that prevent maturation of recombination intermediates. Thus, Smc5/6 functions jointly with Top3 and STR to mediate replication completion and influences the function of other DNA crossed-strand processing enzymes at NPSs.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication/genetics , Genome, Fungal/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , DNA Repair/genetics , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Flap Endonucleases/metabolism , RecQ Helicases/metabolism , Saccharomyces cerevisiae/metabolism
15.
Cancer Res ; 81(2): 426-437, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33239428

ABSTRACT

ATM kinase is a tumor suppressor and a master regulator of the DNA damage response. Most cancer-associated alterations to ATM are missense mutations at the PI3-kinase regulatory domain (PRD) or the kinase domain. Expression of kinase-dead (KD) ATM protein solely accelerates lymphomagenesis beyond ATM loss. To understand how PRD suppresses lymphomagenesis, we introduced the cancer-associated PRD mutation R3008H (R3016 in mouse) into mice. R3008H abrogated DNA damage- and oxidative stress-induced activation of ATM without consistently affecting ATM protein stability and recruitment. In contrast to the early embryonic lethality of AtmKD/KD mice, AtmR3016H (AtmR/R ) mice were viable, immunodeficient, and displayed spontaneous craniofacial abnormalities and delayed lymphomagenesis compared with Atm-/- controls. Mechanistically, R3008H rescued the tardy exchange of ATM-KD at DNA damage foci, indicating that PRD coordinates ATM activation with its exchange at DNA-breaks. Taken together, our results reveal a unique tumorigenesis profile for PRD mutations that is distinct from null or KD mutations. SIGNIFICANT: This study functionally characterizes the most common ATM missense mutation R3008H in cancer and identifies a unique role of PI3-kinase regulatory domain in ATM activation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , DNA Damage , Mutation , Neoplasms/genetics , Animals , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Kaplan-Meier Estimate , Lymphocytes/metabolism , Lymphocytes/pathology , Mice, Knockout , Mice, Transgenic , Neoplasms/metabolism
16.
Cell Biosci ; 10: 8, 2020.
Article in English | MEDLINE | ID: mdl-32015826

ABSTRACT

DNA damage, especially DNA double strand breaks (DSBs) and replication stress, activates a complex post-translational network termed DNA damage response (DDR). Our review focuses on three PI3-kinase related protein kinases-ATM, ATR and DNA-PKcs, which situate at the apex of the mammalian DDR. They are recruited to and activated at the DNA damage sites by their respective sensor protein complexes-MRE11/RAD50/NBS1 for ATM, RPA/ATRIP for ATR and KU70-KU80/86 (XRCC6/XRCC5) for DNA-PKcs. Upon activation, ATM, ATR and DNA-PKcs phosphorylate a large number of partially overlapping substrates to promote efficient and accurate DNA repair and to coordinate DNA repair with other DNA metabolic events (e.g., transcription, replication and mitosis). At the organism level, robust DDR is critical for normal development, aging, stem cell maintenance and regeneration, and physiological genomic rearrangements in lymphocytes and germ cells. In addition to endogenous damage, oncogene-induced replication stresses and genotoxic chemotherapies also activate DDR. On one hand, DDR factors suppress genomic instability to prevent malignant transformation. On the other hand, targeting DDR enhances the therapeutic effects of anti-cancer chemotherapy, which led to the development of specific kinase inhibitors for ATM, ATR and DNA-PKcs. Using mouse models expressing kinase dead ATM, ATR and DNA-PKcs, an unexpected structural function of these kinases was revealed, where the expression of catalytically inactive kinases causes more genomic instability than the loss of the proteins themselves. The spectrum of genomic instabilities and physiological consequences are unique for each kinase and depends on their activating complexes, suggesting a model in which the catalysis is coupled with DNA/chromatin release and catalytic inhibition leads to the persistence of the kinases at the DNA lesion, which in turn affects repair pathway choice and outcomes. Here we discuss the experimental evidences supporting this mode of action and their implications in the design and use of specific kinase inhibitors for ATM, ATR and DNA-PKcs for cancer therapy.

17.
Methods Mol Biol ; 2004: 3-16, 2019.
Article in English | MEDLINE | ID: mdl-31147905

ABSTRACT

SMC complexes play fundamental functions in chromosome architecture and organization as well as in DNA replication and repair throughout the cell cycle. The essential nature of the SMC components makes the study of their specific functions challenging. In this chapter, we describe the application of cell cycle tags to S. cerevisiae SMC genes. The cell cycle tags regulate both gene expression and protein degradation, allowing for restriction of the gene of interest to either the S or the G2/M phase. In case of SMC genes, the tags lead to valuable mutants that can bring insights into cell cycle specific essential functions, chromatin binding pattern and functional interactions. Here, we describe the generation of the cell cycle-restricted mutants in diploid and haploid cells and the validation of their functionality with several approaches.


Subject(s)
Cell Cycle/genetics , Chromatin/genetics , Chromosomes, Fungal/genetics , Alleles , Cell Cycle Proteins/genetics , DNA Replication/genetics , Genes, Fungal/genetics , Saccharomyces cerevisiae/genetics
18.
Nat Commun ; 9(1): 5351, 2018 12 17.
Article in English | MEDLINE | ID: mdl-30559436

ABSTRACT

ATR kinase is activated by RPA-coated single-stranded DNA (ssDNA) to orchestrate DNA damage responses. Here we show that ATR inhibition differs from ATR loss. Mouse model expressing kinase-dead ATR (Atr+/KD), but not loss of ATR (Atr+/-), displays ssDNA-dependent defects at the non-homologous region of X-Y chromosomes during male meiosis leading to sterility, and at telomeres, rDNA, and fragile sites during mitosis leading to lymphocytopenia. Mechanistically, we find that ATR kinase activity is necessary for the rapid exchange of ATR at DNA-damage-sites, which in turn promotes CHK1-phosphorylation. ATR-KD, but not loss of ATR, traps a subset of ATR and RPA on chromatin, where RPA is hyper-phosphorylated by ATM/DNA-PKcs and prevents downstream repair. Consequently, Atr+/KD cells have shorter inter-origin distances and are vulnerable to induced fork collapses, genome instability and mitotic catastrophe. These results reveal mechanistic differences between ATR inhibition and ATR loss, with implications for ATR signaling and cancer therapy.


Subject(s)
DNA Damage/genetics , DNA Repair/genetics , DNA, Single-Stranded/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cells, Cultured , Checkpoint Kinase 1/metabolism , Chromatin/genetics , DNA, Ribosomal/genetics , Gene Knock-In Techniques , Infertility, Male/genetics , Lymphopenia/genetics , Male , Meiosis/genetics , Mice , Mice, Transgenic , Phosphorylation , Replication Protein A/metabolism , Spermatogenesis/genetics , Telomere/genetics
19.
Nat Cancer ; 2(12): 1296-1297, 2021 12.
Article in English | MEDLINE | ID: mdl-35121918
SELECTION OF CITATIONS
SEARCH DETAIL