Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
New Phytol ; 221(1): 67-85, 2019 01.
Article in English | MEDLINE | ID: mdl-30007071

ABSTRACT

Contents Summary 67 I. Introduction 68 II. Silicon transport in plants: to absorb or not to absorb 69 III. The role of silicon in plants: not just a matter of semantics 71 IV. Silicon and biotic stress: beyond mechanical barriers and defense priming 76 V. Silicon and abiotic stress: a proliferation of proposed mechanisms 78 VI. The apoplastic obstruction hypothesis: a working model 79 VII. Perspectives and conclusions 80 Acknowledgements 81 References 81 SUMMARY: Silicon (Si) is not classified as an essential plant nutrient, and yet numerous reports have shown its beneficial effects in a variety of species and environmental circumstances. This has created much confusion in the scientific community with respect to its biological roles. Here, we link molecular and phenotypic data to better classify Si transport, and critically summarize the current state of understanding of the roles of Si in higher plants. We argue that much of the empirical evidence, in particular that derived from recent functional genomics, is at odds with many of the mechanistic assertions surrounding Si's role. In essence, these data do not support reports that Si affects a wide range of molecular-genetic, biochemical and physiological processes. A major reinterpretation of Si's role is therefore needed, which is critical to guide future studies and inform agricultural practice. We propose a working model, which we term the 'apoplastic obstruction hypothesis', which attempts to unify the various observations on Si's beneficial influences on plant growth and yield. This model argues for a fundamental role of Si as an extracellular prophylactic agent against biotic and abiotic stresses (as opposed to an active cellular agent), with important cascading effects on plant form and function.


Subject(s)
Plant Physiological Phenomena , Silicon/metabolism , Animals , Biological Transport , Herbivory , Silicon/physiology , Stress, Physiological
2.
BMC Plant Biol ; 18(1): 97, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29848307

ABSTRACT

BACKGROUND: Silicon (Si) is known to protect against biotrophic and hemibiotrophic plant pathogens; however, the mechanisms by which it exerts its prophylactic role remain unknown. In an attempt to obtain unique insights into the mode of action of Si, we conducted a full comparative transcriptomic analysis of soybean (Glycine max) plants and Phytophthora sojae, a hemibiotroph that relies heavily on effectors for its virulence. RESULTS: Supplying Si to inoculated plants provided a strong protection against P. sojae over the course of the experiment (21 day). Our results showed that the response of Si-free (Si-) plants to inoculation was characterized early (4 dpi) by a high expression of defense-related genes, including plant receptors, which receded over time as the pathogen progressed into the roots. The infection was synchronized with a high expression of effectors by P. sojae, the nature of which changed over time. By contrast, the transcriptomic response of Si-fed (Si+) plants was remarkably unaffected by the presence of P. sojae, and the expression of effector-coding genes by the pathogen was significantly reduced. CONCLUSION: Given that the apoplast is a key site of interaction between effectors and plant defenses and receptors in the soybean-P. sojae complex, as well as the site of amorphous-Si accumulation, our results indicate that Si likely interferes with the signaling network between P. sojae and the plant, preventing or decreasing the release of effectors reaching plant receptors, thus creating a form of incompatible interaction.


Subject(s)
Disease Resistance , Glycine max/genetics , Phytophthora/physiology , Plant Diseases/immunology , Plant Proteins/metabolism , Silicon/pharmacology , Transcriptome , Gene Expression Regulation, Plant , Gene Ontology , Host-Pathogen Interactions , Plant Diseases/parasitology , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/immunology , Plant Roots/physiology , Signal Transduction , Silicon/metabolism , Glycine max/drug effects , Glycine max/immunology , Glycine max/physiology , Virulence
3.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28202046

ABSTRACT

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Subject(s)
Plant Diseases/genetics , Plant Proteins/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Triticum/microbiology , Basidiomycota/pathogenicity , Chromosome Mapping , Disease Resistance/genetics , Genetic Markers , Haplotypes , Phenotype , Plant Diseases/microbiology , Seedlings/genetics , Seedlings/microbiology
4.
Theor Appl Genet ; 129(7): 1373-1382, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27091129

ABSTRACT

KEY MESSAGE: New SNP markers that can be used for marker-assisted selection and map-based cloning saturate the chromosome region carrying SrCad , a wheat gene that confers resistance to Ug99 stem rust. Wheat stem rust, caused by Puccinia graminis f. sp. tritici, is a devastating disease of wheat worldwide. Development of cultivars with effective resistance has been the primary means to control this disease, but the appearance of new virulent strains such as Ug99 has rendered most wheat varieties vulnerable. The stem rust resistance gene SrCad located on chromosome arm 6DS has provided excellent resistance to various strains of Ug99 in field nurseries conducted in Njoro, Kenya since 2005. Three genetic populations were used to identify SNP markers closely linked to the SrCad locus. Of 220 SNP markers evaluated, 27 were found to be located within a 2 cM region surrounding SrCad. The diagnostic potential of these SNPs was evaluated in a diverse set of 50 wheat lines that were primarily of Canadian origin with known presence or absence of SrCad. Three SNP markers tightly linked proximally to SrCad and one SNP that co-segregated with SrCad were completely predictive of the presence or absence of SrCad. These markers also differentiated SrCad from Sr42 and SrTmp which are also located in the same region of chromosome arm 6DS. These markers should be useful in marker-assisted breeding to develop new wheat varieties containing SrCad-based resistance to Ug99 stem rust.


Subject(s)
Chromosome Mapping , Disease Resistance/genetics , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Basidiomycota , Genetic Linkage , Genetic Markers , Genotyping Techniques , Haplotypes , Phenotype , Plant Breeding , Plant Diseases/microbiology , Triticum/microbiology
6.
Plant Dis ; 98(12): 1632-1638, 2014 Dec.
Article in English | MEDLINE | ID: mdl-30703877

ABSTRACT

The objective of this study was to evaluate whether silicon (Si) amendments, known to have a prophylactic role against biotrophic and hemibiotrophic pathogens, could protect soybean against Phytophthora sojae. To fulfill this objective, the initial challenge was to develop a method of inoculation that reproduced the natural infection process while allowing regular Si feeding to the plants. In a first set of experiments, inoculation of P. sojae zoospores directly into hydroponic solutions led to reproducible infections and expected phenotypes when using 'Williams' (rps), 'L75-6141' (Rps1a), 'haro15' (Rps1k), and 'L77-1863' (Rps1b) soybean challenged to races 3 and 7 of P. sojae. This approach offers the advantage of testing simultaneously many soybean cultivars against different races of P. sojae in a controlled environment, and the expression of partial and root resistance. In a second set of experiments aimed at testing the effect of Si, our results clearly showed that Si amendments had a significant effect on disease reduction and plant yield. The effect was particularly noticeable when combined with a cultivar displaying a certain level of resistance to the disease. These results demonstrate a useful method of direct inoculation of soybean plants with P. sojae zoospores through a hydroponic system and show that Si amendments can represent an alternative method of control of P. sojae against soybean.

7.
PLoS One ; 18(4): e0283769, 2023.
Article in English | MEDLINE | ID: mdl-37023078

ABSTRACT

Oat crown rust caused by Puccinia coronata f. sp. avenae P. Syd. & Syd (Pca) is a major constraint to oat (Avena sativa L.) production in many parts of the globe. The objectives of this study were to locate Pc96 on the oat consensus map and to develop SNP markers linked to Pc96 for use in marker-assisted selection. SNP loci linked to the crown rust resistance gene Pc96 were identified by linkage analysis and PACE assays were developed for marker-assisted selection in breeding programs. Pc96 is a race-specific crown rust resistance gene originating from cultivated oat that has been deployed in North American oat breeding programs. Pc96 was mapped in a recombinant inbred line population (n = 122) developed from a cross between the oat crown rust differential known to carry Pc96 and the differential line carrying Pc54. A single resistance locus was identified on chromosome 7D between 48.3 and 91.2 cM. The resistance locus and linked SNPs were validated in two additional biparental populations, Ajay × Pc96 (F2:3, n = 139) and Pc96 × Kasztan (F2:3, n = 168). Based on all populations, the most probable location of the oat crown rust resistance gene Pc96 on the oat consensus map was on chromosome 7D approximately at 87.3 cM. In the Ajay × Pc96 population, a second unlinked resistance gene was contributed by the Pc96 differential line, which mapped to chromosome 6C at 75.5 cM. A haplotype of nine linked SNPs predicted the absence of Pc96 in a diverse group of 144 oat germplasm. SNPs that are closely linked to the Pc96 gene may be beneficial as PCR-based molecular markers in marker-assisted selection.


Subject(s)
Avena , Basidiomycota , Avena/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Breeding , Biomarkers , Puccinia
8.
Plant Dis ; 96(1): 37-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-30731860

ABSTRACT

Silicon (Si) is recognized for its prophylactic role in alleviating diseases when absorbed by plants and has been proposed as a possible solution against soybean rust, caused by Phakopsora pachyrhizi. However, little is known about its potential effects on soybean (Glycine max) because the plant's ability to absorb Si is poorly defined. In this work, our objectives were to evaluate and quantify the absorption of Si in leaves of different soybean cultivars and to determine if such absorption was able to enhance resistance to soybean rust. In a first set of experiments with cv. Williams 82, hydroponic plants were supplied or not with Si and inoculated with urediniospores of P. pachyrhizi. Chemical analyses revealed no significant differences in the plants' Si content regardless of the treatment, which translated into no effect on rust incidence. However, in a second set of experiments with different cultivars, plants of Korean cultivar Hikmok sorip absorbed nearly four times more Si than those of Williams 82. At the same time, plants from this cultivar exhibited a near absence of disease symptoms when supplied with Si. This resistance appeared to be the result of hypersensitive (HR) reactions that were triggered when plants were fed with Si. These results support the concept that a plant's innate ability to absorb Si will dictate the benefits conferred by a treatment with Si and provide evidence that Si can protect soybean plants against soybean rust through mediated resistance.

9.
FEMS Microbiol Lett ; 249(1): 1-6, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16006059

ABSTRACT

Silicon (Si) is a bioactive element associated with beneficial effects on mechanical and physiological properties of plants. Silicon alleviates abiotic and biotic stresses, and increases the resistance of plants to pathogenic fungi. Several studies have suggested that Si activates plant defense mechanisms, yet the exact nature of the interaction between the element and biochemical pathways leading to resistance remains unclear. Silicon possesses unique biochemical properties that may explain its bioactivity as a regulator of plant defense mechanisms. It can act as a modulator influencing the timing and extent of plant defense responses in a manner reminiscent of the role of secondary messengers in induced systemic resistance; it can also bind to hydroxyl groups of proteins strategically involved in signal transduction; or it can interfere with cationic co-factors of enzymes influencing pathogenesis-related events. Silicon may therefore interact with several key components of plant stress signaling systems leading to induced resistance.


Subject(s)
Fungi/pathogenicity , Immunity, Innate , Plant Diseases/microbiology , Signal Transduction , Silicon/pharmacology , Arabidopsis/immunology , Arabidopsis/microbiology , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
10.
Mol Plant Pathol ; 16(6): 572-82, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25346281

ABSTRACT

On absorption by plants, silicon (Si) offers protection against many fungal pathogens, including powdery mildews. The mechanisms by which Si exerts its prophylactic role remain enigmatic, although a prevailing hypothesis suggests that Si positively influences priming. Attempts to decipher Si properties have been limited to plants able to absorb Si, which excludes the model plant Arabidopsis because it lacks Si influx transporters. In this work, we were able to engineer Arabidopsis plants with an Si transporter from wheat (TaLsi1) and to exploit mutants (pad4 and sid2) deficient in salicylic acid (SA)-dependent defence responses to study their phenotypic response and changes in defence expression against Golovinomyces cichoracearum (Gc) following Si treatment. Our results showed that TaLsi1 plants contained significantly more Si and were significantly more resistant to Gc infection than control plants when treated with Si, the first such demonstration in a plant transformed with a heterologous Si transporter. The resistant plants accumulated higher levels of SA and expressed higher levels of transcripts encoding defence genes, thus suggesting a role for Si in the process. However, TaLsi1 pad4 and TaLsi1 sid2 plants were also more resistant to Gc than were pad4 and sid2 plants following Si treatment. Analysis of the resistant phenotypes revealed a significantly reduced production of SA and expression of defence genes comparable with susceptible controls. These results indicate that Si contributes to Arabidopsis defence priming following pathogen infection, but highlight that Si will confer protection even when priming is altered. We conclude that Si-mediated protection involves mechanisms other than SA-dependent defence responses.


Subject(s)
Arabidopsis/immunology , Ascomycota/pathogenicity , Salicylic Acid/metabolism , Silicon/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Mutation
11.
Phytopathology ; 94(2): 177-83, 2004 Feb.
Article in English | MEDLINE | ID: mdl-18943541

ABSTRACT

ABSTRACT Although several reports underscore the importance of silicon (Si) in controlling Magnaporthe grisea on rice, no study has associated this beneficial effect with specific mechanisms of host defense responses against this fungal attack. In this study, however, we provide evidence that higher levels of momilactone phytoalexins were found in leaf extracts from plants inoculated with M. grisea and amended with silicon (Si(+)) than in leaf extracts from inoculated plants not amended with silicon (Si(-) ) or noninoculated Si(+) and Si(-) plants. On this basis, the more efficient stimulation of the terpenoid pathway in Si(+) plants and, consequently, the increase in the levels of momilactones appears to be a factor contributing to enhanced rice resistance to blast. This may explain the lower level of blast severity observed on leaves of Si(+) plants at 96 h after inoculation with M. grisea. The results of this study strongly suggest that Si plays an active role in the resistance of rice to blast rather than the formation of a physical barrier to penetration by M. grisea.

12.
J Plant Physiol ; 166(13): 1413-22, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19345440

ABSTRACT

The accumulation of 5,6-O-methyl trans-aconitate in wheat was previously found to be linked with the presence of powdery mildew (Blumeria graminis) and silicon (Si) feeding. In this work, we sought to determine if trans-aconitate (TA) could act as a precursor of methylated forms of TA in wheat and if a relationship existed between Si treatment, disease development, TA and methyl TA concentration within wheat leaves. In absence of infection, TA concentration increased over time regardless of Si feeding. By contrast, TA concentration remained fairly constant over time in both Si(-) and Si(+)-infected plants but Si(+) plants had a significantly lower level than Si(-) plants. Conversely, methyl TA concentration increased in wheat leaves in response to infection and was linked to wheat's increased resistance induced by Si. The effect of Si feeding was only noticeable on methyl TA concentration in presence of the fungus. This suggests that Si does not act directly on TA concentration in leaves but somehow accentuate the production of methyl TA in stressed plants. Based on the concurrent increase in methyl TA and leveling off of TA concentration, it appears that the latter, instead of accumulating, is used by diseased plants to produce antifungal methylated forms of TA that would act as phytoalexins to limit disease development, a phenomenon more pronounced in plants treated with Si.


Subject(s)
Aconitic Acid/metabolism , Ascomycota/physiology , Plant Diseases/microbiology , Silicon/pharmacology , Triticum/metabolism , Triticum/microbiology , Ascomycota/drug effects , Citric Acid Cycle/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/microbiology , Triticum/drug effects
13.
Proc Natl Acad Sci U S A ; 103(46): 17554-9, 2006 Nov 14.
Article in English | MEDLINE | ID: mdl-17082308

ABSTRACT

The role and essentiality of silicon (Si) in plant biology have been debated for >150 years despite numerous reports describing its beneficial properties. To obtain unique insights regarding the effect of Si on plants, we performed a complete transcriptome analysis of both control and powdery mildew-stressed Arabidopsis plants, with or without Si application, using a 44K microarray. Surprisingly, the expression of all but two genes was unaffected by Si in control plants, a result contradicting reports of a possible direct effect of Si as a fertilizer. In contrast, inoculation of plants, treated or not with Si, altered the expression of a set of nearly 4,000 genes. After functional categorization, many of the up-regulated genes were defense-related, whereas a large proportion of down-regulated genes were involved in primary metabolism. Regulated defense genes included R genes, stress-related transcription factors, genes involved in signal transduction, the biosynthesis of stress hormones (SA, JA, ethylene), and the metabolism of reactive oxygen species. In inoculated plants treated with Si, the magnitude of down-regulation was attenuated by >25%, an indication of stress alleviation. Our results demonstrate that Si treatment had no effect on the metabolism of unstressed plants, suggesting a nonessential role for the element but that it has beneficial properties attributable to modulation of a more efficient response to pathogen stress.


Subject(s)
Arabidopsis/drug effects , Arabidopsis/microbiology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Plant Diseases/genetics , Plant Diseases/microbiology , Silicon/pharmacology , Arabidopsis/genetics , Arabidopsis/ultrastructure , Microscopy, Electron, Scanning , Oligonucleotide Array Sequence Analysis , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL