Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Br J Cancer ; 128(8): 1559-1571, 2023 04.
Article in English | MEDLINE | ID: mdl-36807339

ABSTRACT

BACKGROUND: Genomic alterations of the anaplastic lymphoma kinase gene (ALK) occur recurrently in neuroblastoma, a pediatric malignancy of the sympathetic nervous system. However, information on their development over time has remained sparse. METHODS: ALK alterations were assessed in neuroblastomas at diagnosis and/or relapse from a total of 943 patients, covering all stages of disease. Longitudinal information on diagnostic and relapsed samples from individual patients was available in 101 and 102 cases for mutation and amplification status, respectively. RESULTS: At diagnosis, ALK point mutations occurred in 10.5% of all cases, with highest frequencies in stage 4 patients <18 months. At relapse, ALK alteration frequency increased by 70%, both in high-risk and non-high-risk cases. The increase was most likely due to de novo mutations, frequently leading to R1275Q substitutions, which are sensitive to pharmacological ALK inhibition. By contrast, the frequency of ALK amplifications did not change over the course of the disease. ALK amplifications, but not mutations, were associated with poor patient outcome. CONCLUSIONS: The considerably increased frequency of ALK mutations at relapse and their high prevalence in young stage 4 patients suggest surveying the genomic ALK status regularly in these patient cohorts, and to evaluate ALK-targeted treatment also in intermediate-risk patients.


Subject(s)
Neuroblastoma , Receptor Protein-Tyrosine Kinases , Child , Humans , Anaplastic Lymphoma Kinase/genetics , Receptor Protein-Tyrosine Kinases/genetics , Neoplasm Recurrence, Local/genetics , Neuroblastoma/genetics , Neuroblastoma/pathology , Genomics
2.
Histopathology ; 78(4): 578-585, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32946634

ABSTRACT

AIMS: The advent of specific ALK-targeting drugs has radically changed the outcome of patients with ALK translocated non-small-cell lung cancer (NSCLC). However, emerging resistance to treatment with ALK inhibitors in these patients remains a major concern. In previous studies, we analysed two ALK+ patient cohorts (TP53 wild-type/TP53 mutated) in terms of copy number alterations. All patients belonging to the TP53 wild-type group had mainly genetically stable genomes, with one exception showing chromosomal instability and amplifications of several gene loci, including TERT. Here, we aimed to determine the prevalence of TERT amplifications in these ALK+ lung cancer patients by analysing an independent cohort of 109 ALK translocated cases. We further analysed the copy numbers of numerous cancer-relevant genes and other genetic aberrations. METHODS AND RESULTS: The prevalence of TERT amplifications was determined by means of FISH analyses. Copy numbers of 87 cancer-relevant genes were determined by NanoString nCounter® technology, FoundationOne® and lung-specific NGS panels in some of these TERT-amplified samples, and clinical data on patients with TERT-amplified tumours were collected. Our data revealed that five (4.6%) of all 109 analysed ALK+ patients harboured amplification of TERT and that these patients had genetically unstable genomes. CONCLUSIONS: Our preliminary study shows that ALK+ adenocarcinomas should be evaluated in the context of their genomic background in order to more clearly understand and predict patients' individual course of disease.


Subject(s)
Adenocarcinoma of Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Telomerase/genetics , Adenocarcinoma of Lung/pathology , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Humans , In Situ Hybridization, Fluorescence , Lung/pathology , Lung Neoplasms/pathology , Telomerase/metabolism , Translocation, Genetic
3.
Pathologe ; 42(Suppl 1): 110-118, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34477921

ABSTRACT

Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD­1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI­H colorectal cancer (CRC). Further indications, such as dMMR/MSI­H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI­H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.


Subject(s)
Microsatellite Instability , Neoplasms/drug therapy , Neoplasms/genetics , DNA Mismatch Repair , Female , Humans , Immune Checkpoint Inhibitors/therapeutic use , Immunohistochemistry , Prognosis
4.
Pathologe ; 42(4): 414-423, 2021 Jul.
Article in German | MEDLINE | ID: mdl-34043067

ABSTRACT

Based on new trial data regarding immune checkpoint inhibitors (ICIs), the detection of high-grade microsatellite instability (MSI-H) or underlying deficient mismatch repair protein (dMMR) is now becoming increasingly important for predicting treatment response. For the first time, a PD­1 ICI (pembrolizumab) has been approved by the European Medicines Agency (EMA) for first-line treatment of advanced (stage IV) dMMR/MSI­H colorectal cancer (CRC). Further indications, such as dMMR/MSI­H endometrial carcinoma (EC), have already succeeded (Dostarlimab, 2nd line treatment) and others are expected to follow before the end of 2021. The question of optimal testing in routine diagnostics should therefore be re-evaluated. Based on a consideration of the strengths and weaknesses of the widely available methods (immunohistochemistry and PCR), a test algorithm is proposed that allows quality assured, reliable, and cost-effective dMMR/MSI­H testing. For CRC and EC, testing is therefore already possible at the primary diagnosis stage, in line with international recommendations (NICE, NCCN). The clinician is therefore enabled from the outset to consider not only the predictive but also the prognostic and predispositional implications of such a test when counseling patients and formulating treatment recommendations. As a basis for quality assurance, participation in interlaboratory comparisons and continuous documentation of results (e.g., QuIP Monitor) are strongly recommended.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , DNA Mismatch Repair , Humans , Immunohistochemistry , Prognosis
5.
Pathologe ; 42(1): 103-115, 2021 Feb.
Article in German | MEDLINE | ID: mdl-33258061

ABSTRACT

NTRK gene fusions are sporadic genetic alterations that can occur across tumor entities. Whereas they are quite rare in most solid tumors they are present at much higher frequencies in certain rare tumors such as infantile fibrosarcoma, congenital mesoblastic nephroma, secretory breast, or salivary gland carcinoma. NTRK gene fusions or TRK fusion proteins are considered strong oncogenic drivers. If NTRK gene fusions are detected, TRK inhibitors such as entrectinib and larotrectinib can be used regardless of the tumor entity. So far only larotrectinib is approved in the European Union. Both drugs have been shown to be effective and well tolerated in phase I and phase II studies. The low prevalence of TRK fusion-positive cancers poses challenges for diagnostic and clinical work-flows. On one hand, patients with NTRK gene fusions should be identified; on the other hand, epidemiological, histological, and resource-related aspects have to be taken into account. Based on these premises, we suggest a diagnostic algorithm for TRK fusion cancers and present current data on TRK inhibitors.


Subject(s)
Kidney Neoplasms , Nephroma, Mesoblastic , Gene Fusion/genetics , Genetic Markers , Humans , Mutation , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/genetics
6.
Genes Chromosomes Cancer ; 59(8): 445-453, 2020 08.
Article in English | MEDLINE | ID: mdl-32319699

ABSTRACT

Gene fusions involving the three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, or NTRK3 were identified as oncogenic drivers in many cancer types. Two small molecule inhibitors have been tested in clinical trials recently and require the detection of a NTRK fusion gene prior to therapeutic application. Fluorescence in situ hybridization (FISH) and targeted next-generation sequencing (tNGS) assays are commonly used for diagnostic profiling of gene fusions. In the presented study we applied an external quality assessment (EQA) scheme in order to investigate the suitability of FISH and RNA-/DNA-based tNGS for detection of NTRK fusions in a multinational and multicentric ring trial. In total 27 participants registered for this study. Nine institutions took part in the FISH-based and 18 in the NGS-based round robin test, the latter additionally subdivided into low-input and high-input NGS methods (regarding nucleic acid input). Regardless of the testing method applied, all participants received tumor sections of 10 formalin-fixed and paraffin-embedded (FFPE) tissue blocks for in situ hybridization or RNA/DNA extraction, and the results were submitted via an online questionnaire. For FISH testing, eight of nine (88.8%) participants, and for NGS-based testing 15 of 18 (83.3%) participants accomplished the round robin test successfully. The overall high success rate demonstrates that FISH- and tNGS-based NTRK testing can be well established in a routine diagnostic setting. Complementing this dataset, we provide an updated in silico analysis on the coverage of more than 150 NTRK fusion variants by several commercially available RNA-based tNGS panels.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Testing/methods , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , RNA-Seq/methods , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Genetic Testing/standards , Humans , In Situ Hybridization, Fluorescence/methods , Neoplasms/diagnosis , RNA-Seq/standards , Sensitivity and Specificity , Tissue Preservation/methods
7.
Genes Chromosomes Cancer ; 59(3): 178-188, 2020 03.
Article in English | MEDLINE | ID: mdl-31652375

ABSTRACT

NTRK fusions involving three neurotrophic tyrosine receptor kinase genes NTRK1, NTRK2, and NTRK3 and a variety of fusion partners were identified as oncogenic drivers across many cancer types. Drugs that target the chimeric protein product require the identification of the underlying gene fusion. This advocates the diagnostic use of molecular assays ranging from fluorescence in situ hybridization (FISH) and reverse transcription polymerase chain reaction (RT-PCR)/Sanger approaches to targeted next-generation sequencing (NGS). Immunohistochemistry may be used as a screening tool and adjunct diagnostic assay in this context. Although FISH and RT-PCR/Sanger approaches are widely adopted in routine diagnostics, current experience with targeted RNA-based NGS is limited. Here, we report on the analysis of major assays (TruSight TST170 and TruSight RNA Fusion [Illumina]; Archer FusionPlex Solid Tumor, Archer FusionPlex Lung, and Archer FusionPlex Oncology [Archer]; Oncomine Comprehensive Assay v3 RNA and Oncomine Focus RNA [Thermo Fisher Scientific]) that are commercially available. The data set includes performance results of a multicentric comparative wet-lab study as well as an in silico analysis on the ability to detect the broad range of NTRK fusions reported until now. A test algorithm that reflects assay methodology is provided. This data will support implementation of targeted RNA sequencing in routine diagnostics and inform screening and testing strategies that have been brought forward.


Subject(s)
Biomarkers, Tumor , Genetic Testing , High-Throughput Nucleotide Sequencing , Receptors, Nerve Growth Factor/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Clinical Decision-Making , Disease Management , Female , Genetic Testing/methods , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Infant , Male , Middle Aged , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Nerve Growth Factor/metabolism , Reproducibility of Results , Workflow , Young Adult
8.
Cancer Immunol Immunother ; 69(4): 523-533, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31960110

ABSTRACT

The outcome in esophageal adenocarcinoma (EAC) is still poor with only 20% of patients in Western populations surviving for more than 5 years. Almost nothing is known about the precise composition of immune cells and their gene expression profiles in primary resected EACs and also nothing compared to neoadjuvant treated EACs. This study analyzes and compares immune profiles of primary resected and neoadjuvant treated esophageal adenocarcinoma and unravels possible targets for immunotherapy. We analyzed 47 EAC in total considering a set of 30 primary treatment-naive EACs and 17 neoadjuvant pretreated (12 × CROSS, 5 × FLOT) using the Nanostring's panel-based gene expression platform including 770 genes being important in malignant tumors and their immune micromileu. Most of the significantly altered genes are involved in the regulation of immune responses, T-and B cell functions as well as antigen processing. Chemokine-receptor axes like the CXCL9, -10,-11/CXCR3- are prominent in esophageal adenocarcinoma with a fold change of up to 9.5 promoting cancer cell proliferation and metastasis. ARG1, as a regulator of T-cell fate is sixfold down-regulated in untreated primary esophageal tumors. The influence of the currently used neoadjuvant treatment revealed a down-regulation of nearly all important checkpoint markers and inflammatory related genes in the local microenvironment. We found a higher expression of checkpoint markers like LAG3, TIM3, CTLA4 and CD276 in comparison to PD-L1/PD-1 supporting clinical trials analyzing the efficacy of a combination of different checkpoint inhibitors in EACs. We found an up-regulation of CD38 or LILRB1 as examples of additional immune escape mechanism.


Subject(s)
Adenocarcinoma/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/therapy , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Adenocarcinoma/genetics , Adenocarcinoma/immunology , B7 Antigens/genetics , B7 Antigens/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Chemoradiotherapy/methods , Esophageal Neoplasms/genetics , Esophageal Neoplasms/immunology , Esophagectomy/methods , Female , Humans , Male , Middle Aged , Monitoring, Immunologic , Neoadjuvant Therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
9.
BMC Cancer ; 20(1): 408, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32397977

ABSTRACT

BACKGROUND: Over the past years, EGFR tyrosine kinase inhibitors (TKI) revolutionized treatment response. 1st-generation (reversible) EGFR TKI and later the 2nd -generation irreversible EGFR TKI Afatinib were aimed to improve treatment response. Nevertheless, diverse resistance mechanisms develop within the first year of therapy. Here, we evaluate the prevalence of acquired resistance mechanisms towards reversible and irreversible EGFR TKI. METHODS: Rebiopsies of patients after progression to EGFR TKI therapy (> 6 months) were targeted to histological and molecular analysis. Multiplexed targeted sequencing (NGS) was conducted to identify acquired resistance mutations (e.g. EGFR p.T790M). Further, Fluorescence in situ hybridisation (FISH) was applied to investigate the status of bypass mechanisms like, MET or HER2 amplification. RESULTS: One hundred twenty-three rebiopsy samples of patients that underwent first-line EGFR TKI therapy (PFS ≥6 months) were histologically and molecularly profiled upon clinical progression. The EGFR p.T790M mutation is the major mechanism of acquired resistance in patients treated with reversible as well as irreversible EGFR TKI. Nevertheless a statistically significant difference for the acquisition of T790M mutation has been identified: 45% of afatinib- vs 65% of reversible EGFR TKI treated patients developed a T790M mutation (p-value 0.02). Progression free survival (PFS) was comparable in patients treated with irreversible EGFR irrespective of the sensitising primary mutation or the acquisition of p.T790M. CONCLUSIONS: The EGFR p.T790M mutation is the most prominent mechanism of resistance to reversible and irreversible EGFR TKI therapy. Nevertheless there is a statistically significant difference of p.T790M acquisition between the two types of TKI, which might be of importance for clinical therapy decision.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Drug Resistance, Neoplasm , Lung Neoplasms/pathology , Mutation , Protein Kinase Inhibitors/pharmacology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , ErbB Receptors/genetics , Female , Follow-Up Studies , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Male , Middle Aged , Molecular Targeted Therapy , Prognosis , Retrospective Studies , Survival Rate
10.
BMC Gastroenterol ; 20(1): 417, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33308189

ABSTRACT

BACKGROUND: Helicobacter pylori, a 2 × 1 µm spiral-shaped bacterium, is the most common risk factor for gastric cancer worldwide. Clinically, patients presenting with symptoms of gastritis, routinely undergo gastric biopsies. The following histo-morphological evaluation dictates therapeutic decisions, where antibiotics are used for H. pylori eradication. There is a strong rational to accelerate the detection process of H. pylori on histological specimens, using novel technologies, such as deep learning. METHODS: We designed a deep-learning-based decision support algorithm that can be applied on regular whole slide images of gastric biopsies. In detail, we can detect H. pylori both on Giemsa- and regular H&E stained whole slide images. RESULTS: With the help of our decision support algorithm, we show an increased sensitivity in a subset of 87 cases that underwent additional PCR- and immunohistochemical testing to define a sensitive ground truth of HP presence. For Giemsa stained sections, the decision support algorithm achieved a sensitivity of 100% compared to 68.4% (microscopic diagnosis), with a tolerable specificity of 66.2% for the decision support algorithm compared to 92.6 (microscopic diagnosis). CONCLUSION: Together, we provide the first evidence of a decision support algorithm proving as a sensitive screening option for H. pylori that can potentially aid pathologists to accurately diagnose H. pylori presence on gastric biopsies.


Subject(s)
Deep Learning , Gastritis , Helicobacter Infections , Helicobacter pylori , Biopsy , Gastric Mucosa , Gastritis/diagnosis , Helicobacter Infections/diagnosis , Humans
11.
Mod Pathol ; 32(5): 627-638, 2019 05.
Article in English | MEDLINE | ID: mdl-30459450

ABSTRACT

Although non-small-cell lung cancer is a leading cause of cancer-related deaths, the molecular characterization and classification of its genetic alterations has drastically changed treatment options and overall survival within the last few decades. In particular, tyrosine kinase inhibitors targeting specific molecular alterations, among other MET, have greatly improved the prognosis of non-small-cell lung cancer patients. Here, we compare the genomic background of a subset of non-small-cell lung cancer cases harboring either a MET high-level amplification (n = 24) or a MET exon 14 skipping mutation (n = 26), using next-generatison sequencing, fluorescence in situ hybridization, immunohistochemistry, and Nanostring nCounter® technology. We demonstrate that the MET-amplified cohort shows a higher genetic instability, compared with the mutant cohort (p < 0.001). Furthermore, MET mutations occur at high allele frequency and in the presence of co-occurring TP53 mutations (n = 7), as well as MDM2 (n = 7), CDK4 (n = 6), and HMGA2 (n = 5) co-amplifications. No other potential driver mutation has been detected. Conversely, in the MET-amplified group, we identify co-occurring pathogenic NRAS and KRAS mutations (n = 5) and a significantly higher number of TP53 mutations, compared with the MET-mutant cohort (p = 0.048). Of note, MET amplifications occur more frequently as subclonal events. Interestingly, despite the significantly (p = 0.00103) older age at diagnosis of stage IIIb/IV of MET-mutant patients (median 77 years), compared with MET high-level amplified patients (median 69 years), MET-mutant patients with advanced-stage tumors showed a significantly better prognosis at 12 months (p = 0.04). In conclusion, the two groups of MET genetic alterations differ, both clinically and genetically: our data strongly suggest that MET exon 14 skipping mutations represent an early driver mutation. In opposition, MET amplifications occur usually in the background of other strong genetic events and therefore MET amplifications should be interpreted in the context of each tumor's genetic background, rather than as an isolated driver event, especially when considering MET-specific treatment options.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Gene Amplification , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-met/genetics , Aged , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Cyclin-Dependent Kinase 4/genetics , Female , GTP Phosphohydrolases/genetics , Genetic Predisposition to Disease , Genomic Instability , HMGA2 Protein/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Membrane Proteins/genetics , Middle Aged , Molecular Targeted Therapy , Mutation Rate , Phenotype , Prognosis , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Tumor Suppressor Protein p53/genetics
12.
BMC Gastroenterol ; 19(1): 21, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717682

ABSTRACT

BACKGROUND: Carcinomas of the small bowel are rare tumors usually with dismal prognosis. Most recently, some potentially treatable molecular alterations were described. We emphasize the growing evidence of individualized treatment options in small bowel carcinoma. METHODS: We performed a DNA- based multi-gene panel using ultra-deep sequencing analysis (including 14 genes with up to 452 amplicons in total; KRAS, NRAS, HRAS, BRAF, DDR2, ERBB2, KEAP1, NFE2L2, PIK3CA, PTEN, RHOA, BRCA1, BRCA2 and TP53) as well as an RNA-based gene fusion panel including ALK, BRAF, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET and ROS1 on eleven formalin fixed and paraffin embedded small bowel carcinomas. Additionally, mismatch-repair-deficiency was analyzed by checking the microsatellite status using the five different mononucleotide markers BAT25, BAT26, NR-21, NR-22 and NR-27 and loss of mismatch repair proteins using four different markers (MLH1, MSH6, MSH2, PMS2). RESULTS: In five out of eleven small bowel carcinomas we found potentially treatable genetic alterations. Three patients demonstrated pathogenic (class 5) BRCA1 or BRCA2 mutations - one germline-related in a mixed neuroendocrine-non neuroendocrine neoplasm (MiNEN). Two additional patients revealed an activating ERBB2 mutation or PIK3CA mutation. Furthermore two tumors were highly microsatellite-instable (MSI-high), in one case associated to Lynch-syndrome. We did not find any gene fusions. CONCLUSION: Our results underscore, in particular, the relevance of potentially treatable molecular alterations (like ERBB2, BRCA and MSI) in small bowel carcinomas. Further studies are needed to proof the efficacy of these targeted therapies in small bowel carcinomas.


Subject(s)
Adenocarcinoma/therapy , BRCA2 Protein/genetics , Intestinal Neoplasms/therapy , Intestine, Small , Microsatellite Instability , Precision Medicine , Receptor, ErbB-2/genetics , Ubiquitin-Protein Ligases/genetics , Adenocarcinoma/genetics , Aged , DNA Repair/genetics , Humans , Intestinal Neoplasms/genetics , Middle Aged , Mutation
13.
J Pathol ; 246(1): 67-76, 2018 09.
Article in English | MEDLINE | ID: mdl-29885057

ABSTRACT

The anaplastic lymphoma kinase (ALK) rearrangement defines a distinct molecular subtype of non-small cell lung cancer (NSCLC). Despite the excellent initial efficacy of ALK inhibitors in patients with ALK+ lung cancer, resistance occurs almost inevitably. To date, there is no reliable biomarker allowing the identification of patients at higher risk of relapse. Here, we analysed a subset of 53 ALK+ tumours with and without TP53 mutation and ALK+ NSCLC cell lines by NanoString nCounter technology. We found that the co-occurrence of early TP53 mutations in ALK+ NSCLC can lead to chromosomal instability: 24% of TP53-mutated patients showed amplifications of known cancer genes such as MYC (14%), CCND1 (10%), TERT (5%), BIRC2 (5%), ORAOV1 (5%), and YAP1 (5%). MYC-overexpressing ALK+ TP53-mutated cells had a proliferative advantage compared to wild-type cells. ChIP-Seq data revealed MYC-binding sites within the promoter region of EML4, and MYC overexpression in ALK+ TP53-mutated cells resulted in an upregulation of EML4-ALK, indicating a potential MYC-dependent resistance mechanism in patients with increased MYC copy number. Our study reveals that ALK+ NSCLC represents a more heterogeneous subgroup of tumours than initially thought, and that TP53 mutations in that particular cancer type define a subset of tumours that harbour chromosomal instability, leading to the co-occurrence of pathogenic aberrations. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Anaplastic Lymphoma Kinase/genetics , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Gene Amplification , Genomic Instability , Lung Neoplasms/genetics , Mutation , Proto-Oncogene Proteins c-myc/genetics , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Anaplastic Lymphoma Kinase/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Middle Aged , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phenotype , Proto-Oncogene Proteins c-myc/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
14.
Hum Mutat ; 39(3): 394-405, 2018 03.
Article in English | MEDLINE | ID: mdl-29215764

ABSTRACT

Ovarian cancer patients with germline or somatic pathogenic variants benefit from treatment with poly ADP ribose polymerase (PARP) inhibitors. Tumor BRCA1/2 testing is more challenging than germline testing as the majority of samples are formalin-fixed paraffin embedded (FFPE), the tumor genome is complex, and the allelic fraction of somatic variants can be low. We collaborated with 10 laboratories testing BRCA1/2 in tumors to compare different approaches to identify clinically important variants within FFPE tumor DNA samples. This was not a proficiency study but an inter-laboratory comparison to identify common issues. Each laboratory received the same tumor DNA samples ranging in genotype, quantity, quality, and variant allele frequency (VAF). Each laboratory performed their preferred next-generation sequencing method to report on the variants. No false positive results were reported in this small study and the majority of methods detected the low VAF variants. A number of variants were not detected due to the bioinformatics analysis, variant classification, or insufficient DNA. The use of hybridization capture or short amplicon methods are recommended based on a bioinformatic assessment of the data. The study highlights the importance of establishing standards and standardization for tBRCA testing particularly when the test results dictate clinical decisions regarding life extending therapies.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Testing/methods , Neoplasms/genetics , Practice Patterns, Physicians' , Computational Biology , DNA Copy Number Variations/genetics , Exons/genetics , Gene Frequency/genetics , Genotype , Humans
15.
Clin Chem ; 63(3): 751-760, 2017 03.
Article in English | MEDLINE | ID: mdl-28073897

ABSTRACT

BACKGROUND: Anaplastic lymphoma receptor tyrosine kinase (ALK), ROS proto-oncogene 1, receptor tyrosine kinase (ROS1), and ret proto-oncogene (RET) fusions are present in 5%-7% of patients with advanced non-small-cell lung cancer (NSCLC); their accurate identification is critical to guide targeted therapies. FISH and immunohistochemistry (IHC) are considered the gold standards to determine gene fusions, but they have limitations. The nCounter platform is a potentially useful genomic tool for multiplexed detection of gene fusions, but has not been validated in the clinical setting. METHODS: Formalin-fixed, paraffin embedded (FFPE) samples from 108 patients with advanced NSCLC were analyzed with an nCounter-based assay and the results compared with FISH, IHC, and reverse transcription PCR (RT-PCR). Data on response to fusion kinase inhibitors was retrospectively collected in a subset of 29 patients. RESULTS: Of 108 FFPE samples, 98 were successfully analyzed by nCounter (91%), which identified 55 fusion-positive cases (32 ALK, 21 ROS1, and 2 RET). nCounter results were highly concordant with IHC for ALK (98.5%, CI = 91.8-99.7), while 11 discrepancies were found compared with FISH (87.5% concordance, CI = 79.0-92.9). For ROS1, nCounter showed similar agreement with IHC and FISH (87.2% and 85.9%), but a substantial number of samples were positive only by 1 or 2 techniques. Of the 25 patients deriving clinical benefit from fusion kinase inhibitors, 24 were positive by nCounter and 22 by FISH. CONCLUSIONS: nCounter compares favorably with IHC and FISH and can be used for identifying patients with advanced NSCLC positive for ALK/ROS1/RET fusion genes.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Oncogene Proteins, Fusion/genetics , Paraffin Embedding , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-ret/genetics , Proto-Oncogene Proteins/genetics , RNA, Messenger/analysis , Receptor Protein-Tyrosine Kinases/genetics , Tissue Fixation , Anaplastic Lymphoma Kinase , Cell Line, Tumor , Formaldehyde , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ret/metabolism , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Reverse Transcriptase Polymerase Chain Reaction
16.
Gut ; 65(8): 1296-305, 2016 08.
Article in English | MEDLINE | ID: mdl-26001389

ABSTRACT

OBJECTIVE: Microsatellite instability (MSI) is detected in approximately 15% of all colorectal cancers (CRC) and virtually in all cases with Lynch syndrome. The MSI phenotype is caused by dysfunctional mismatch repair (MMR) and leads to accumulation of DNA replication errors. Sporadic MSI CRC often harbours BRAF(V600E); however, no consistent data exist regarding targeted treatment approaches in BRAF(wt) MSI CRC. DESIGN: Mutations and quantitative MSI were analysed by deep sequencing in 196 formalin fixed paraffin embedded (FFPE) specimens comprising Lynch and Lynch-like CRCs from the German Hereditary Nonpolyposis Colorectal Cancer registry. Functional relevance of recurrent ERBB2/HER2 mutations was investigated in CRC cell lines using reversible and irreversible HER-targeting inhibitors, EGFR-directed antibody cetuximab, HER2-directed antibody trastuzumab and siRNA-mediated ERBB2/HER2 knockdown. RESULTS: Quantification of nucleotide loss in non-coding mononucleotide repeats distinguished microsatellite status with very high accuracy (area under curve=0.9998) and demonstrated progressive losses with deeper invasion of MMR-deficient colorectal neoplasms (p=0.008). Characterisation of BRAF(wt) MSI CRC revealed hot-spot mutations in well-known oncogenic drivers, including KRAS (38.7%), PIK3CA (36.5%), and ERBB2 (15.0%). L755S and V842I substitutions in ERBB2 were highly recurrent. Functional analyses in ERBB2-mutated MSI CRC cell lines revealed a differential response to HER-targeting compounds and superiority of irreversible pan-HER inhibitors. CONCLUSIONS: We developed a high-throughput deep sequencing approach for concomitant MSI and mutational analyses in FFPE specimens. We provided novel insights into clinically relevant alterations in MSI CRC and a rationale for targeting ERBB2/HER2 mutations in Lynch and Lynch-like CRC.


Subject(s)
Cetuximab/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , ErbB Receptors , Receptor, ErbB-2 , Trastuzumab/pharmacology , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Male , Microsatellite Instability , Middle Aged , Pharmacogenomic Testing/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics
17.
Int J Cancer ; 138(4): 927-38, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26340530

ABSTRACT

Small cell lung cancers (SCLCs) and extrapulmonary small cell cancers (SCCs) are very aggressive tumors arising de novo as primary small cell cancer with characteristic genetic lesions in RB1 and TP53. Based on murine models, neuroendocrine stem cells of the terminal bronchioli have been postulated as the cellular origin of primary SCLC. However, both in lung and many other organs, combined small cell/non-small cell tumors and secondary transitions from non-small cell carcinomas upon cancer therapy to neuroendocrine and small cell tumors occur. We define features of "small cell-ness" based on neuroendocrine markers, characteristic RB1 and TP53 mutations and small cell morphology. Furthermore, here we identify a pathway driving the pathogenesis of secondary SCLC involving inactivating NOTCH mutations, activation of the NOTCH target ASCL1 and canonical WNT-signaling in the context of mutual bi-allelic RB1 and TP53 lesions. Additionally, we explored ASCL1 dependent RB inactivation by phosphorylation, which is reversible by CDK5 inhibition. We experimentally verify the NOTCH-ASCL1-RB-p53 signaling axis in vitro and validate its activation by genetic alterations in vivo. We analyzed clinical tumor samples including SCLC, SCC and pulmonary large cell neuroendocrine carcinomas and adenocarcinomas using amplicon-based Next Generation Sequencing, immunohistochemistry and fluorescence in situ hybridization. In conclusion, we identified a novel pathway underlying rare secondary SCLC which may drive small cell carcinomas in organs other than lung, as well.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Carcinoma, Neuroendocrine/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Signal Transduction , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA Mutational Analysis , Flow Cytometry , Fluorescent Antibody Technique , High-Throughput Nucleotide Sequencing , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Receptors, Notch/genetics , Receptors, Notch/metabolism , Retinoblastoma Protein/genetics , Transfection , Tumor Suppressor Protein p53/genetics
18.
BMC Cancer ; 15: 291, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25886408

ABSTRACT

BACKGROUND: Personalised medicine and targeted therapy have revolutionised cancer treatment. However, most patients develop drug resistance and relapse after showing an initial treatment response. Two theories have been postulated; either secondary resistance mutations develop de novo during therapy by mutagenesis or they are present in minor subclones prior to therapy. In this study, these two theories were evaluated in gastrointestinal stromal tumours (GISTs) where most patients develop secondary resistance mutations in the KIT gene during therapy with tyrosine kinase inhibitors. METHODS: We used a cohort of 33 formalin-fixed, paraffin embedded (FFPE) primary GISTs and their corresponding recurrent tumours with known mutational status. The primary tumours were analysed for the secondary mutations of the recurrences, which had been identified previously. The primary tumours were resected prior to tyrosine kinase inhibitor therapy. Three ultrasensitive, massively parallel sequencing approaches on the GS Junior (Roche, Mannheim, Germany) and the MiSeq(TM) (Illumina, San Diego, CA, USA) were applied. Additionally, nine fresh-frozen samples resected prior to therapy were analysed for the most common secondary resistance mutations. RESULTS: With a sensitivity level of down to 0.02%, no pre-existing resistant subclones with secondary KIT mutations were detected in primary GISTs. The sensitivity level varied for individual secondary mutations and was limited by sequencing artefacts on both systems. Artificial T > C substitutions at the position of the exon 13 p.V654A mutation, in particular, led to a lower sensitivity, independent from the source of the material. Fresh-frozen samples showed the same range of artificially mutated allele frequencies as the FFPE material. CONCLUSIONS: Although we achieved a sufficiently high level of sensitivity, neither in the primary FFPE nor in the fresh-frozen GISTs we were able to detect pre-existing resistant subclones of the corresponding known secondary resistance mutations of the recurrent tumours. This supports the theory that secondary KIT resistance mutations develop under treatment by "de novo" mutagenesis. Alternatively, the detection limit of two mutated clones in 10,000 wild-type clones might not have been high enough or heterogeneous tissue samples, per se, might not be suitable for the detection of very small subpopulations of mutated cells.


Subject(s)
Drug Resistance, Neoplasm/genetics , Gastrointestinal Neoplasms/genetics , Gastrointestinal Stromal Tumors/genetics , High-Throughput Nucleotide Sequencing/methods , Protein Kinase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Cohort Studies , Drug Resistance, Neoplasm/drug effects , Female , Gastrointestinal Neoplasms/diagnosis , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/drug therapy , Humans , Male , Middle Aged , Protein Kinase Inhibitors/pharmacology , Retrospective Studies
19.
Exp Mol Pathol ; 99(3): 682-6, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26546837

ABSTRACT

Small cell lung carcinoma (SCLC) is the most aggressive entity of lung cancer. Rapid cancer progression and early formation of systemic metastases drive the deadly outcome of SCLC. Recent advances in identifying oncogenes by cancer whole genome sequencing improved the understanding of SCLC carcinogenesis. However, tumor material is often limited in the clinic. Thus, it is a compulsive issue to improve SCLC diagnostics by combining established immunohistochemistry and next generation sequencing. We implemented amplicon-based next generation deep sequencing in our routine diagnostics pipeline to analyze RB1, TP53, EP300 and CREBBP, frequently mutated in SCLC. Thereby, our pipeline combined routine SCLC histology and identification of somatic mutations. We comprehensively analyzed fifty randomly collected SCLC metastases isolated from trachea and lymph nodes in comparison to specimens derived from primary SCLC. SCLC lymph node metastases showed enhanced proliferation and frequently a collapsed keratin cytoskeleton compared to SCLC metastases isolated from trachea. We identified characteristic synchronous mutations in RB1 and TP53 and non-synchronous CREBBP and EP300 mutations. Our data showed the benefit of implementing deep sequencing into routine diagnostics. We here identify oncogenic drivers and simultaneously gain further insights into SCLC tumor biology.


Subject(s)
DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing/methods , Lung Neoplasms/genetics , Neoplasm Metastasis/genetics , Small Cell Lung Carcinoma/genetics , Humans , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Small Cell Lung Carcinoma/pathology
20.
BMC Cancer ; 14: 13, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24410877

ABSTRACT

BACKGROUND: The approval of vemurafenib in the US 2011 and in Europe 2012 improved the therapy of not resectable or metastatic melanoma. Patients carrying a substitution of valine to glutamic acid at codon 600 (p.V600E) or a substitution of valine to leucine (p.V600K) in BRAF show complete or partial response. Therefore, the precise identification of the underlying somatic mutations is essential. Herein, we evaluate the sensitivity, specificity and feasibility of six different methods for the detection of BRAF mutations. METHODS: Samples harboring p.V600E mutations as well as rare mutations in BRAF exon 15 were compared to wildtype samples. DNA was extracted from formalin-fixed paraffin-embedded tissues by manual micro-dissection and automated extraction. BRAF mutational analysis was carried out by high resolution melting (HRM) analysis, pyrosequencing, allele specific PCR, next generation sequencing (NGS) and immunohistochemistry (IHC). All mutations were independently reassessed by Sanger sequencing. Due to the limited tumor tissue available different numbers of samples were analyzed with each method (82, 72, 60, 72, 49 and 82 respectively). RESULTS: There was no difference in sensitivity between the HRM analysis and Sanger sequencing (98%). All mutations down to 6.6% allele frequency could be detected with 100% specificity. In contrast, pyrosequencing detected 100% of the mutations down to 5% allele frequency but exhibited only 90% specificity. The allele specific PCR failed to detect 16.3% of the mutations eligible for therapy with vemurafenib. NGS could analyze 100% of the cases with 100% specificity but exhibited 97.5% sensitivity. IHC showed once cross-reactivity with p.V600R but was a good amendment to HRM. CONCLUSION: Therefore, at present, a combination of HRM and IHC is recommended to increase sensitivity and specificity for routine diagnostic to fulfill the European requirements concerning vemurafenib therapy of melanoma patients.


Subject(s)
Biomarkers, Tumor , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Immunohistochemistry , Mutation , Polymerase Chain Reaction , Proto-Oncogene Proteins B-raf , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Humans , Indoles/therapeutic use , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/genetics , Molecular Targeted Therapy , Paraffin Embedding , Patient Selection , Precision Medicine , Predictive Value of Tests , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/analysis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Sulfonamides/therapeutic use , Tissue Fixation , Vemurafenib
SELECTION OF CITATIONS
SEARCH DETAIL