Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Br J Haematol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719214

ABSTRACT

Biomarkers for cytopenias following CAR T-cell treatment in relapsed/refractory (RR) multiple myeloma (MM) are not completely defined. We prospectively analysed 275 sequential peripheral blood (PB) samples from 58 RRMM patients treated with BCMA-targeted CAR T cells, and then divided them into three groups: (i) baseline (before leukapheresis), (ii) ≤day+30, and (iii) >day+30 after CAR T-cell therapy. We evaluated laboratory data and performed flow cytometry to determine the (CAR) T-cell subsets. Baseline hyperferritinaemia was a risk factor for long-lasting grade ≥3 anaemia (r = 0.47, p < 0.001) and thrombocytopenia (r = 0.44, p = 0.002) after CAR T-cell therapy. Low baseline haemoglobin (Hb) and PLT were associated with long-lasting grade ≥3 anaemia (r = -0.56, p < 0.001) and thrombocytopenia (r = -0.44, p = 0.002) respectively. We observed dynamics of CAR-negative T-cell subsets following CAR T-cell infusion. In the late phase after CAR T-cell therapy (>day+30), CD4Tn frequency correlated with anaemia (r = 0.41, p = 0.0014) and lymphocytopenia was related to frequencies of CD8+ T cells (r = 0.72, p < 0.001) and CD8Teff (r = 0.64, p < 0.001). CD4Tcm frequency was correlated with leucocytopenia (r = -0.49, p < 0.001). In summary, preexisting cytopenias and hyperferritinaemia indicated long duration of grade ≥3 post-CAR T-cell cytopenias. Prolonged cytopenia may be related to immune remodelling with a shift in the CAR-negative T-cell subsets following CAR T-cell therapy.

2.
Haematologica ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572568

ABSTRACT

Belantamab mafodotin (belantamab) is a first-in-class anti-BCMA antibody-drug conjugate approved for the treatment of triple-class refractory multiple myeloma. It provides a unique therapeutic option for patients ineligible for CAR-T and bispecific antibody therapy, and/or patients progressing on anti-CD38 treatment where CAR-T and bispecifics might be kept in reserve. Wider use of the drug can be challenged by its distinct ocular side effect profile, including corneal microcysts and keratopathy. While dose reduction has been the most effective way to reduce these toxicities, the underlying mechanism of this BCMA off-target effect remains to be characterized. In this study, we provide the first evidence for soluble BCMA (sBCMA) in lacrimal fluid and report on its correlation with tumor burden in myeloma patients. We confirm that corneal cells do not express BCMA, and show that sBCMA-belantamab complexes may rather be internalized by corneal epithelial cells through receptor-ligand independent pinocytosis. Using an hTcEpi corneal cell-line model, we show that the pinocytosis inhibitor EIPA significantly reduces belantamab-specific cell killing. As a proof of concept, we provide detailed patient profiles demonstrating that, after belantamab-induced cell killing, sBCMA is released into circulation, followed by a delayed increase of sBCMA in the tear fluid and subsequent onset of keratopathy. Based on the proposed mechanism, pinocytosis-induced keratopathy can be prevented by lowering the entry of sBCMA into the lacrimal fluid. Future therapeutic concepts may therefore consist of belantamab-free debulking therapy prior to belantamab consolidation and/or concomitant use of gamma-secretase inhibition as currently evaluated for belantamab and nirogacestat in ongoing studies.

3.
Haematologica ; 108(4): 958-968, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36263838

ABSTRACT

The treatment of multiple myeloma (MM) is evolving rapidly. In the past few years, chimeric antigen receptor modified T cells and bispecific antibodies are bringing new treatment options to patients with relapsed/refractory MM. Currently, B-cell maturation antigen (BCMA) has emerged as the most commonly used target of T-cell-based immunotherapies for relapsed/refractory MM. Clinical data have demonstrated promising efficacy and manageable safety profiles of both chimeric antigen receptor T-cell and bispecific antibody therapies in heavily pretreated relapsed/refractory MM. However, most patients suffer from relapses at later time points, and the mechanism of resistance remains largely unknown. Theoretically, loss of antigen is a potential tumor-intrinsic resistance mechanism against BCMA-targeted immunotherapies. Strategies to overcome this kind of drug resistance are, therefore, needed. In this review, we discuss the loss of BCMA in the new epoch of immunotherapy for MM.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , Receptors, Chimeric Antigen , Humans , Multiple Myeloma/drug therapy , B-Cell Maturation Antigen , Neoplasm Recurrence, Local/drug therapy , Immunotherapy , Antibodies, Bispecific/therapeutic use , Biology , Immunotherapy, Adoptive/adverse effects
5.
Biomark Res ; 11(1): 52, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37194045

ABSTRACT

We analyzed single nucleotide polymorphisms (SNPs) in PKNOX1 (rs2839629) and in the intergenic region between PKNOX1 and CBS (rs915854) by Sanger sequencing in 88 patients with multiple myeloma treated with bortezomib. All patients (n = 13) harboring a homozygous mutation in PKNOX1 (rs2839629) also had a homozygous mutated rs915854 genotype. Homozygous mutated genotypes of rs2839629 and rs915854 were significantly enriched in patients with painful peripheral neuropathy (PNP) (P < 0.0001), and homozygous mutated rs2839629 genotype was significantly enriched in patients with pain compared to patients with no pain (P = 0.04). In summary, both SNPs rs2839629 and/or rs915854 may be potential biomarkers predicting an increased risk to develop painful PNP under bortezomib.

6.
Commun Biol ; 6(1): 1299, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38129580

ABSTRACT

The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Immunotherapy/methods , T-Lymphocytes , Antibodies, Monoclonal/therapeutic use , Receptors, Death Domain , Fas-Associated Death Domain Protein
SELECTION OF CITATIONS
SEARCH DETAIL