Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 20(4): 515-516, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862953

ABSTRACT

In the version of this article initially published, the bars were not aligned with the data points or horizontal axis labels in Fig. 5d, and the labels along each horizontal axis of Fig. 5j-l indicating the presence (+) or absence (-) of doxycycline (Dox) were incorrectly included with the labels below that axis. Also, the right vertical bar above Fig. 7b linking 'P = 0.0001' to the key was incorrect; the correct comparison is αPD-1 versus Dox + αPD-1. Similarly, the right vertical bar above Fig. 7e linking 'P = 0.0002' to the key was incorrect; the correct comparison is αPD-1 versus Rosig + αPD-1. The errors have been corrected in the HTML and PDF versions of the article.

2.
Nat Immunol ; 20(2): 206-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664764

ABSTRACT

Immune checkpoint blockade therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses due to insufficient T cell infiltration in tumors. Here we show that expression of mitochondrial uncoupling protein 2 (UCP2) in tumor cells determines the immunostimulatory feature of the tumor microenvironment (TME) and is positively associated with prolonged survival. UCP2 reprograms the immune state of the TME by altering its cytokine milieu in an interferon regulatory factor 5-dependent manner. Consequently, UCP2 boosts the conventional type 1 dendritic cell- and CD8+ T cell-dependent anti-tumor immune cycle and normalizes the tumor vasculature. Finally we show, using either a genetic or pharmacological approach, that induction of UCP2 sensitizes melanomas to programmed cell death protein-1 blockade treatment and elicits effective anti-tumor responses. Together, this study demonstrates that targeting the UCP2 pathway is a potent strategy for alleviating the immunosuppressive TME and overcoming the primary resistance of programmed cell death protein-1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , Uncoupling Protein 2/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm/immunology , Female , Humans , Immunotherapy/methods , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/blood supply , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Survival Analysis , Treatment Outcome , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
3.
EMBO J ; 42(13): e112559, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37259596

ABSTRACT

Metastatic colonization of distant organs accounts for over 90% of deaths related to solid cancers, yet the molecular determinants of metastasis remain poorly understood. Here, we unveil a mechanism of colonization in the aggressive basal-like subtype of breast cancer that is driven by the NAD+ metabolic enzyme nicotinamide N-methyltransferase (NNMT). We demonstrate that NNMT imprints a basal genetic program into cancer cells, enhancing their plasticity. In line, NNMT expression is associated with poor clinical outcomes in patients with breast cancer. Accordingly, ablation of NNMT dramatically suppresses metastasis formation in pre-clinical mouse models. Mechanistically, NNMT depletion results in a methyl overflow that increases histone H3K9 trimethylation (H3K9me3) and DNA methylation at the promoters of PR/SET Domain-5 (PRDM5) and extracellular matrix-related genes. PRDM5 emerged in this study as a pro-metastatic gene acting via induction of cancer-cell intrinsic transcription of collagens. Depletion of PRDM5 in tumor cells decreases COL1A1 deposition and impairs metastatic colonization of the lungs. These findings reveal a critical activity of the NNMT-PRDM5-COL1A1 axis for cancer cell plasticity and metastasis in basal-like breast cancer.


Subject(s)
Neoplasms , Nicotinamide N-Methyltransferase , Animals , Mice , Nicotinamide N-Methyltransferase/genetics , Nicotinamide N-Methyltransferase/metabolism , Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic
4.
Nature ; 594(7864): 566-571, 2021 06.
Article in English | MEDLINE | ID: mdl-34079127

ABSTRACT

The persistence of undetectable disseminated tumour cells (DTCs) after primary tumour resection poses a major challenge to effective cancer treatment1-3. These enduring dormant DTCs are seeds of future metastases, and the mechanisms that switch them from dormancy to outgrowth require definition. Because cancer dormancy provides a unique therapeutic window for preventing metastatic disease, a comprehensive understanding of the distribution, composition and dynamics of reservoirs of dormant DTCs is imperative. Here we show that different tissue-specific microenvironments restrain or allow the progression of breast cancer in the liver-a frequent site of metastasis4 that is often associated with a poor prognosis5. Using mouse models, we show that there is a selective increase in natural killer (NK) cells in the dormant milieu. Adjuvant interleukin-15-based immunotherapy ensures an abundant pool of NK cells that sustains dormancy through interferon-γ signalling, thereby preventing hepatic metastases and prolonging survival. Exit from dormancy follows a marked contraction of the NK cell compartment and the concurrent accumulation of activated hepatic stellate cells (aHSCs). Our proteomics studies on liver co-cultures implicate the aHSC-secreted chemokine CXCL12 in the induction of NK cell quiescence through its cognate receptor CXCR4. CXCL12 expression and aHSC abundance are closely correlated in patients with liver metastases. Our data identify the interplay between NK cells and aHSCs as a master switch of cancer dormancy, and suggest that therapies aimed at normalizing the NK cell pool might succeed in preventing metastatic outgrowth.


Subject(s)
Breast Neoplasms/pathology , Hepatic Stellate Cells/cytology , Killer Cells, Natural/cytology , Animals , Cell Line, Tumor , Chemokine CXCL12/metabolism , Coculture Techniques , Female , Humans , Immunotherapy , Interferon-gamma , Liver Neoplasms/secondary , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasms, Experimental/pathology , Proteomics , Transcriptome , Tumor Microenvironment
5.
Emerg Infect Dis ; 30(10): 2140-2144, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39320240

ABSTRACT

We identified a novel human circovirus in an immunocompromised 66-year-old woman with sudden onset of self-limiting hepatitis. We detected human circovirus 1 (HCirV-1) transcripts in hepatocytes and the HCirV-1 genome long-term in the patient's blood, stool, and urine. HCirV-1 is an emerging human pathogen that persists in susceptible patients.


Subject(s)
Circoviridae Infections , Circovirus , Immunocompromised Host , Humans , Aged , Female , Circoviridae Infections/virology , Circoviridae Infections/veterinary , Circovirus/genetics , Circovirus/isolation & purification , Circovirus/immunology , Switzerland , Hepatitis, Viral, Human/virology , Hepatitis, Viral, Human/diagnosis , Phylogeny , Genome, Viral
6.
Mod Pathol ; 37(10): 100558, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969270

ABSTRACT

Adjuvant immunotherapy has been recently recommended for patients with metastatic clear cell renal cell carcinoma (ccRCC), but there are no tissue biomarkers to predict treatment response in ccRCC. Potential predictive biomarkers are mainly assessed in primary tumor tissue, whereas metastases (METs) remain understudied. To explore potential differences between genomic alterations and immune phenotypes in primary tumors and their matched METs, we analyzed primary tumors (PTs) of 47 ccRCC patients and their matched distant METs by comprehensive targeted parallel sequencing, whole-genome copy number variation analysis, determination of microsatellite instability, and tumor mutational burden. We quantified the spatial distribution of tumor-infiltrating CD8+ T cells and coexpression of the T-cell-exhaustion marker thymocyte selection-associated high mobility group box (TOX) by digital immunoprofiling and quantified tertiary lymphoid structures. Most METs were pathologically "cold." Inflamed, pathologically "hot" PTs were associated with decreased disease-free survival, worst for patients with high levels of CD8+TOX+ T cells. Interestingly, inflamed METs showed a relative increase in exhausted CD8+TOX+ T cells and increased accumulative size of tertiary lymphoid structures compared with PTs. Integrative analysis of molecular and immune phenotypes revealed BAP1 and CDKN2A/B deficiency to be associated with an inflamed immune phenotype. Our results highlight the distinct spatial distribution and differentiation of CD8+ T cells at metastatic sites, and the association of an inflamed microenvironment with specific genomic alterations.

7.
Acta Neuropathol ; 148(1): 11, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060438

ABSTRACT

The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.


Subject(s)
Brain , COVID-19 , Immunity, Innate , Humans , COVID-19/immunology , Immunity, Innate/immunology , Brain/immunology , Brain/pathology , Male , Female , Middle Aged , Aged , Microglia/immunology , Microglia/pathology , Adult , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Cicatrix/immunology , Cicatrix/pathology , Machine Learning
8.
Histopathology ; 83(4): 582-590, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37317636

ABSTRACT

AIMS: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection broadly affects organ homeostasis, including the haematopoietic system. Autopsy studies are a crucial tool for investigation of organ-specific pathologies. Here we perform an in-depth analysis of the impact of severe coronavirus disease 2019 (COVID-19) on bone marrow haematopoiesis in correlation with clinical and laboratory parameters. METHODS AND RESULTS: Twenty-eight autopsy cases and five controls from two academic centres were included in the study. We performed a comprehensive analysis of bone marrow pathology and microenvironment features with clinical and laboratory parameters and assessed SARS-CoV-2 infection of the bone marrow by quantitative polymerase chain reaction (qPCR) analysis. In COVID-19 patients, bone marrow specimens showed a left-shifted myelopoiesis (19 of 28, 64%), increased myeloid-erythroid ratio (eight of 28, 28%), increased megakaryopoiesis (six of 28, 21%) and lymphocytosis (four of 28, 14%). Strikingly, a high proportion of COVID-19 specimens showed erythrophagocytosis (15 of 28, 54%) and the presence of siderophages (11 of 15, 73%) compared to control cases (none of five, 0%). Clinically, erythrophagocytosis correlated with lower haemoglobin levels and was more frequently observed in patients from the second wave. Analysis of the immune environment showed a strong increase in CD68+ macrophages (16 of 28, 57%) and a borderline lymphocytosis (five of 28, 18%). The stromal microenvironment showed oedema (two of 28, 7%) and severe capillary congestion (one of 28, 4%) in isolated cases. No stromal fibrosis or microvascular thrombosis was found. While all cases had confirmed positive testing of SARS-CoV-2 in the respiratory system, SARS-CoV-2 was not detected in the bone marrow by high-sensitivity PCR, suggesting that SARS-CoV-2 does not commonly replicate in the haematopoietic microenvironment. CONCLUSIONS: SARS-CoV-2 infection indirectly impacts the haematological compartment and the bone marrow immune environment. Erythrophagocytosis is frequent and associated with lower haemoglobin levels in patients with severe COVID-19.


Subject(s)
COVID-19 , Lymphocytosis , Humans , SARS-CoV-2 , Bone Marrow , Hematopoiesis , Hemoglobins
9.
Nature ; 541(7638): 541-545, 2017 01 26.
Article in English | MEDLINE | ID: mdl-28068668

ABSTRACT

Cell fate perturbations underlie many human diseases, including breast cancer. Unfortunately, the mechanisms by which breast cell fate are regulated are largely unknown. The mammary gland epithelium consists of differentiated luminal epithelial and basal myoepithelial cells, as well as undifferentiated stem cells and more restricted progenitors. Breast cancer originates from this epithelium, but the molecular mechanisms that underlie breast epithelial hierarchy remain ill-defined. Here, we use a high-content confocal image-based short hairpin RNA screen to identify tumour suppressors that regulate breast cell fate in primary human breast epithelial cells. We show that ablation of the large tumour suppressor kinases (LATS) 1 and 2 (refs 5, 6), which are part of the Hippo pathway, promotes the luminal phenotype and increases the number of bipotent and luminal progenitors, the proposed cells-of-origin of most human breast cancers. Mechanistically, we have identified a direct interaction between Hippo and oestrogen receptor-α (ERα) signalling. In the presence of LATS, ERα was targeted for ubiquitination and Ddb1-cullin4-associated-factor 1 (DCAF1)-dependent proteasomal degradation. Absence of LATS stabilized ERα and the Hippo effectors YAP and TAZ (hereafter YAP/TAZ), which together control breast cell fate through intrinsic and paracrine mechanisms. Our findings reveal a non-canonical (that is, YAP/TAZ-independent) effect of LATS in the regulation of human breast cell fate.


Subject(s)
Breast/cytology , Breast/enzymology , Cell Differentiation , Cell Lineage , Estrogen Receptor alpha/metabolism , Protein Serine-Threonine Kinases/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/agonists , Adaptor Proteins, Signal Transducing/metabolism , Breast/pathology , Carrier Proteins/metabolism , Cells, Cultured , Estrogen Receptor alpha/agonists , Female , Genes, Tumor Suppressor , Humans , Phosphoproteins/agonists , Phosphoproteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Serine-Threonine Kinases/deficiency , Proteolysis , Signal Transduction , Transcription Factors , Tumor Suppressor Proteins/deficiency , Ubiquitin/metabolism , Ubiquitin-Protein Ligases , YAP-Signaling Proteins
10.
Gut ; 71(12): 2526-2538, 2022 12.
Article in English | MEDLINE | ID: mdl-35058274

ABSTRACT

OBJECTIVE: Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN: We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS: MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION: Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease.


Subject(s)
Inflammatory Bowel Diseases , Mucosal-Associated Invariant T Cells , Humans , Minor Histocompatibility Antigens , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , Liver/metabolism , Hepatocytes/metabolism , Inflammatory Bowel Diseases/metabolism , Lymphocyte Activation
11.
Pathobiology ; 89(3): 166-177, 2022.
Article in English | MEDLINE | ID: mdl-34915500

ABSTRACT

INTRODUCTION: Since angiotensin converting enzyme-2 (ACE2) was discovered as an essential entry factor of SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), there has been conflicting evidence regarding the role of renin-angiotensin-aldosterone system (RAAS) in COVID-19. This study elucidates pulmonary expression patterns SARS-CoV-2 entry factors (ACE2 and transmembrane protease serine subtype 2, TMPRSS2) and RAAS components in lethal COVID-19. METHODS: Lung tissue from COVID-19 autopsies (n = 27) and controls (n = 23) underwent immunohistochemical staining for RAAS components (angiotensin receptors 1 and 2, ACE2 and Mas-receptor) and bradykinin receptors 1 and 2. Staining of individual cellular populations (alveolar pneumocytes [ALV], desquamated cells [DES] and endothelium [END]) was measured by a binary scale (positive/negative). SARS-CoV-2 was detected using immunohistochemistry against nucleocapsid protein, in-situ hybridization and quantitative reverse transcriptase polymerase chain reaction. Gene expression profiling for ACE2, ACE and TMPRSS2 was performed. RESULTS: Subtle differences were observed when comparing COVID-19 patients and controls not reaching statistical significance, such as a higher incidence of ACE2-positivity in END (52% vs. 39%) but lower positivity in ALVs (63% vs. 70%) and an overall downregulation of ACE2 gene expression (0.25 vs. 0.55). However, COVID-19 patients with RAAS inhibitor (RAASi) intake had significantly shorter hospitalization times (5 vs. 12 days), higher viral loads (57,517 vs. 15,980/106 RNase P-gene copies) and decreased ACE/ACE2-expression ratios (4.58 vs. 11.07) than patients without. TMPRSS2 expression was significantly (1.76-fold) higher in COVID-19 patients than controls. CONCLUSION: Our study delineates the heterogeneous expression patterns of RAAS components in the lungs, which vary amongst cellular populations, and implies that COVID-19 patients with RAASi-intake present with a more rapid disease progression, although this requires further investigation.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme Inhibitors , Humans , Renin-Angiotensin System/physiology
14.
Oncology ; 99(12): 802-812, 2021.
Article in English | MEDLINE | ID: mdl-34515209

ABSTRACT

INTRODUCTION: Physicians spend an ever-rising amount of time to collect relevant information from highly variable medical reports and integrate them into the patient's health condition. OBJECTIVES: We compared synoptic reporting based on data elements to narrative reporting in order to evaluate its capabilities to collect and integrate clinical information. METHODS: We developed a novel system to align medical reporting to data integration requirements and tested it in prostate cancer screening. We compared expenditure of time, data quality, and user satisfaction for data acquisition, integration, and evaluation. RESULTS: In a total of 26 sessions, 2 urologists, 2 radiologists, and 2 pathologists conducted the diagnostic work-up for prostate cancer screening with both narrative reporting and the novel system. The novel system led to a significantly reduced time for collection and integration of patient information (91%, p < 0.001), reporting in radiology (44%, p < 0.001) and pathology (33%, p = 0.154). The system usage showed a high positive effect on evaluated data quality parameters completeness, format, understandability, as well as user satisfaction. CONCLUSION: This study provides evidence that synoptic reporting based on data elements is effectively reducing time for collection and integration of patient information. Further research is needed to assess the system's impact for different patient journeys.


Subject(s)
Data Management/methods , Early Detection of Cancer/methods , Medical Oncology/methods , Prostatic Neoplasms/diagnostic imaging , Software , Hospitals, University , Humans , Magnetic Resonance Imaging/methods , Male , Pathologists/psychology , Pilot Projects , Prostate-Specific Antigen , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/pathology , Radiologists/psychology , Research Report , Switzerland/epidemiology , Urologists/psychology
15.
Pathobiology ; 88(1): 69-77, 2021.
Article in English | MEDLINE | ID: mdl-32950981

ABSTRACT

Since the outbreak of coronavirus disease 2019 (COVID-19), there has been a debate whether pregnant women are at a specific risk for COVID-19 and whether it might be vertically transmittable through the placenta. We present a series of five placentas of SARS coronavirus 2 (SARS-CoV-2)-positive women who had been diagnosed with mild symptoms of COVID-19 or had been asymptomatic before birth. We provide a detailed histopathologic description of morphological changes accompanied by an analysis of presence of SARS-CoV-2 in the placental tissue. All placentas were term deliveries (40th and 41st gestational weeks). One SARS-CoV-2-positive patient presented with cough and dyspnoea. This placenta showed prominent lymphohistiocytic villitis and intervillositis and signs of maternal and foetal malperfusion. Viral RNA was present in both placenta tissue and the umbilical cord and could be visualized by in situ hybridization in the decidua. SARS-CoV-2 tests were negative at the time of delivery of 3/5 women, and their placentas did not show increased inflammatory infiltrates. Signs of maternal and/or foetal malperfusion were present in 100% and 40% of cases, respectively. There was no transplacental transmission to the infants. In our cohort, we can document different time points regarding SARS-CoV-2 infection. In acute COVID-19, prominent lymphohistiocytic villitis may occur and might potentially be attributable to SARS-CoV-2 infection of the placenta. Furthermore, there are histopathological signs of maternal and foetal malperfusion, which might have a relationship to an altered coagulative or microangiopathic state induced by SARS-CoV-2, yet this cannot be proven considering a plethora of confounding factors.


Subject(s)
COVID-19/pathology , COVID-19/virology , Placenta/virology , SARS-CoV-2/pathogenicity , Adult , Cohort Studies , Female , Humans , Placenta/pathology , Pregnancy
16.
J Pathol ; 250(1): 19-29, 2020 01.
Article in English | MEDLINE | ID: mdl-31471895

ABSTRACT

In non-small cell lung cancer (NSCLC), immune checkpoint inhibitors (ICIs) significantly improve overall survival (OS). Tumor mutational burden (TMB) has emerged as a predictive biomarker for patients treated with ICIs. Here, we evaluated the predictive power of TMB measured by the Oncomine™ Tumor Mutational Load targeted sequencing assay in 76 NSCLC patients treated with ICIs. TMB was assessed retrospectively in 76 NSCLC patients receiving ICI therapy. Clinical data (RECIST 1.1) were collected and patients were classified as having either durable clinical benefit (DCB) or no durable benefit (NDB). Additionally, genetic alterations and PD-L1 expression were assessed and compared with TMB and response rate. TMB was significantly higher in patients with DCB than in patients with NDB (median TMB = 8.5 versus 6.0 mutations/Mb, Mann-Whitney p = 0.0244). 64% of patients with high TMB (cut-off = third tertile, TMB ≥ 9) were responders (DCB) compared to 33% and 29% of patients with intermediate and low TMB, respectively (cut-off = second and first tertile, TMB = 5-9 and TMB ≤ 4, respectively). TMB-high patients showed significantly longer progression-free survival (PFS) and OS (log-rank test p = 0.0014 for PFS and 0.0197 for OS). While identifying different subgroups of patients, combining PD-L1 expression and TMB increased the predictive power (from AUC 0.63 to AUC 0.65). Our results show that the TML panel is an effective tool to stratify patients for ICI treatment. A combination of biomarkers might maximize the predictive precision for patient stratification. Our study supports TMB evaluation through targeted NGS in NSCLC patient samples as a tool to predict response to ICI therapy. We offer recommendations for a reliable and cost-effective assessment of TMB in a routine diagnostic setting. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , DNA Mutational Analysis/methods , High-Throughput Nucleotide Sequencing , Lung Neoplasms/genetics , Mutation , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Clinical Decision-Making , Female , Genetic Predisposition to Disease , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Male , Middle Aged , Molecular Targeted Therapy , Patient Selection , Phenotype , Precision Medicine , Predictive Value of Tests , Reproducibility of Results , Switzerland
17.
J Hand Surg Am ; 46(12): 1128.e1-1128.e4, 2021 12.
Article in English | MEDLINE | ID: mdl-33581912

ABSTRACT

Trichophyton verrucosum is a pathogen causing superficial mycoses in cattle worldwide and is one of the few zoophilic dermatophytes. Farmers and veterinarians are at a higher risk for infection owing to frequent direct animal contact. An increase in cases among humans has been observed in the past few years. We report a rare case of T verrucosum of the forearm in a 51-year-old cattle farmer, who after initial treatment with antibiotics and surgery, and in whom diagnosis was delayed, was finally successfully treated with terbinafine and itraconazole.


Subject(s)
Arthrodermataceae , Tinea , Animals , Cattle , Farmers , Forearm , Humans , Tinea/diagnosis , Tinea/drug therapy , Tinea/veterinary , Trichophyton
18.
Histopathology ; 77(2): 198-209, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32364264

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a sweeping pandemic. Its major manifestation is in the respiratory tract, and the general extent of organ involvement and the microscopic changes in the lungs remain insufficiently characterised. Autopsies are essential to elucidate COVID-19-associated organ alterations. METHODS AND RESULTS: This article reports the autopsy findings of 21 COVID-19 patients hospitalised at the University Hospital Basel and at the Cantonal Hospital Baselland, Switzerland. An in-corpore technique was performed to ensure optimal staff safety. The primary cause of death was respiratory failure with exudative diffuse alveolar damage and massive capillary congestion, often accompanied by microthrombi despite anticoagulation. Ten cases showed superimposed bronchopneumonia. Further findings included pulmonary embolism (n = 4), alveolar haemorrhage (n = 3), and vasculitis (n = 1). Pathologies in other organ systems were predominantly attributable to shock; three patients showed signs of generalised and five of pulmonary thrombotic microangiopathy. Six patients were diagnosed with senile cardiac amyloidosis upon autopsy. Most patients suffered from one or more comorbidities (hypertension, obesity, cardiovascular diseases, and diabetes mellitus). Additionally, there was an overall predominance of males and individuals with blood group A (81% and 65%, respectively). All relevant histological slides are linked as open-source scans in supplementary files. CONCLUSIONS: This study provides an overview of postmortem findings in COVID-19 cases, implying that hypertensive, elderly, obese, male individuals with severe cardiovascular comorbidities as well as those with blood group A may have a lower threshold of tolerance for COVID-19. This provides a pathophysiological explanation for higher mortality rates among these patients.


Subject(s)
COVID-19/pathology , Capillaries/pathology , Vascular Diseases/pathology , Vascular Diseases/virology , Aged , Aged, 80 and over , Autopsy , Capillaries/virology , Female , Humans , Lung/pathology , Male , Middle Aged , SARS-CoV-2
19.
Nature ; 515(7525): 130-3, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25337873

ABSTRACT

Secretion of C-C chemokine ligand 2 (CCL2) by mammary tumours recruits CCR2-expressing inflammatory monocytes to primary tumours and metastatic sites, and CCL2 neutralization in mice inhibits metastasis by retaining monocytes in the bone marrow. Here we report a paradoxical effect of CCL2 in four syngeneic mouse models of metastatic breast cancer. Surprisingly, interruption of CCL2 inhibition leads to an overshoot of metastases and accelerates death. This is the result of monocyte release from the bone marrow and enhancement of cancer cell mobilization from the primary tumour, as well as blood vessel formation and increased proliferation of metastatic cells in the lungs in an interleukin (IL)-6- and vascular endothelial growth factor (VEGF)-A-dependent manner. Notably, inhibition of CCL2 and IL-6 markedly reduced metastases and increased survival of the animals. CCL2 has been implicated in various neoplasias and adopted as a therapeutic target. However, our results call for caution when considering anti-CCL2 agents as monotherapy in metastatic disease and highlight the tumour microenvironment as a critical determinant of successful anti-metastatic therapy.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Chemokine CCL2/antagonists & inhibitors , Chemokine CCL2/metabolism , Neoplasm Metastasis , Neovascularization, Pathologic , Animals , Blood Vessels/cytology , Blood Vessels/drug effects , Blood Vessels/growth & development , Cell Proliferation/drug effects , Disease Models, Animal , Female , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Monocytes/cytology , Monocytes/metabolism , Neoplasm Metastasis/drug therapy , Neovascularization, Pathologic/drug therapy , Survival Analysis , Tumor Microenvironment , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism
20.
Ther Umsch ; 76(7): 404-408, 2019.
Article in German | MEDLINE | ID: mdl-31913091

ABSTRACT

Future Medicine: Digital Pathology Abstract. Pathology is facing a paradigm shift. Digitization enables highly efficient, networked diagnostics and the simplified exchange of expert knowledge. Algorithms for image analysis and artificial intelligence have the potential to further increase the quality of diagnostics in pathology. Structured electronic reporting enables the continuous development of digital diagnostics and improves the communication between clinical disciplines. Here we identify and discuss the main trends that will shape digital pathology.


Subject(s)
Image Interpretation, Computer-Assisted , Image Processing, Computer-Assisted , Pathology/trends , Algorithms , Humans , Telepathology
SELECTION OF CITATIONS
SEARCH DETAIL