Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Arch Toxicol ; 91(11): 3645, 2017 11.
Article in English | MEDLINE | ID: mdl-28980015

ABSTRACT

During manuscript proofing, the following sentence was not deleted in the section "Results" at the end of the paragraph: "Both male and female hepatocytes responded in a similar fashion to cotinine, whereas male hepatocyte function was more sensitive to chrysene, fluorene and naphthalene than female hepatocytes".

2.
Arch Toxicol ; 91(11): 3633-3643, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28510779

ABSTRACT

The liver is a dynamic organ which is both multifunctional and highly regenerative. A major role of the liver is to process both endo and xenobiotics. Cigarettes are an example of a legal and widely used drug which can cause major health problems for adults and constitute a particular risk to the foetus, if the mother smokes during pregnancy. Cigarette smoke contains a complex mixture of thousands of different xenobiotics, including nicotine and polycyclic aromatic hydrocarbons. These affect foetal development in a sex-specific manner, inducing sex-dependant molecular responses in different organs. To date, the effect of maternal smoking on the foetal liver has been studied in vitro using cell lines, primary tissue and animal models. While these models have proven to be useful, poor cell phenotype, tissue scarcity, batch-to-batch variation and species differences have led to difficulties in data extrapolation toward human development. Therefore, in this study we have employed hepatoblasts, derived from pluripotent stem cells, to model the effects of xenobiotics from cigarette smoke on human hepatocyte development. Highly pure hepatocyte populations (>90%) were produced in vitro and exposed to factors present in cigarette smoke. Analysis of ATP levels revealed that, independent of the sex, the majority of smoking derivatives tested individually did not deplete ATP levels below 50%. However, following exposure to a cocktail of smoking derivatives, ATP production fell below 50% in a sex-dependent manner. This was paralleled by a loss metabolic activity and secretory ability in both female and male hepatocytes. Interestingly, cell depletion was less pronounced in female hepatocytes, whereas caspase activation was ~twofold greater, indicating sex differences in cell death upon exposure to the smoking derivatives tested.


Subject(s)
Hepatocytes/cytology , Hepatocytes/drug effects , Pluripotent Stem Cells/drug effects , Smoking/adverse effects , Adenosine Triphosphate/metabolism , Cell Differentiation , Cells, Cultured , Cotinine/toxicity , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Female , Humans , Male , Pluripotent Stem Cells/cytology , Polycyclic Aromatic Hydrocarbons/toxicity , Sex Factors , alpha-Fetoproteins/metabolism
4.
STAR Protoc ; 2(2): 100502, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33997816

ABSTRACT

This protocol describes how to produce human liver spheres from pluripotent stem cell-derived hepatic progenitors, endothelial cells, and hepatic stellate cells. Liver spheres form by self-assembly in microwells, generating up to 73 spheres per well of a 96-well plate. This process was automated using liquid handling and pipetting systems, permitting cost-effective scale-up and reducing sphere variability. In its current form, this system provides a powerful tool to generate human liver tissue for disease modeling and drug screening. For complete details on the use and execution of this protocol, please refer to Lucendo-Villarin et al. (2020) (https://doi.org/10.1088/1758-5090/abbdb2).


Subject(s)
Automation, Laboratory , Cell Culture Techniques , Cell Differentiation , Liver , Pluripotent Stem Cells , Spheroids, Cellular , Humans , Liver/cytology , Liver/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism
5.
STAR Protoc ; 2(2): 100493, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33997813

ABSTRACT

This protocol describes the production of hepatocyte-like cells (HLCs) from human pluripotent stem cells and how to induce hepatic steatosis, a condition characterized by intracellular lipid accumulation. Following differentiation to an HLC phenotype, intracellular lipid accumulation is induced with a steatosis induction cocktail, allowing the user to examine the cellular processes that underpin hepatic steatosis. Furthermore, the renewable nature of our system, on a defined genetic background, permits in-depth mechanistic analysis, which may facilitate therapeutic target identification in the future. For complete details on the use and execution of this protocol, please refer to Sinton et al. (2021).


Subject(s)
Cell Differentiation , Fatty Liver/metabolism , Hepatocytes/metabolism , Models, Biological , Pluripotent Stem Cells/metabolism , Fatty Liver/pathology , Hepatocytes/pathology , Humans , Pluripotent Stem Cells/pathology
6.
PLoS One ; 16(2): e0244070, 2021.
Article in English | MEDLINE | ID: mdl-33556073

ABSTRACT

A major bottleneck in the study of human liver physiology is the provision of stable liver tissue in sufficient quantity. As a result, current approaches to modelling human drug efficacy and toxicity rely heavily on immortalized human and animal cell lines. These models are informative but do possess significant drawbacks. To address the issues presented by those models, researchers have turned to pluripotent stem cells (PSCs). PSCs can be generated from defined genetic backgrounds, are scalable, and capable of differentiation to all the cell types found in the human body, representing an attractive source of somatic cells for in vitro and in vivo endeavours. Although unlimited numbers of somatic cell types can be generated in vitro, their maturation still remains problematic. In order to develop high fidelity PSC-derived liver tissue, it is necessary to better understand the cell microenvironment in vitro including key elements of liver physiology. In vivo a major driver of zonated liver function is the oxygen gradient that exists from periportal to pericentral regions. In this paper, we demonstrate how cell culture conditions for PSC-derived liver sphere systems can be optimised to recapitulate physiologically relevant oxygen gradients by using mathematical modelling. The mathematical model incorporates some often-understated features and mechanisms of traditional spheroid systems such as cell-specific oxygen uptake, media volume, spheroid size, and well dimensions that can lead to a spatially heterogeneous distribution of oxygen. This mathematical modelling approach allows for the calibration and identification of culture conditions required to generate physiologically realistic function within the microtissue through recapitulation of the in vivo microenvironment.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Oxygen/metabolism , Pluripotent Stem Cells/metabolism , Hepatocytes/cytology , Humans , Liver/cytology , Models, Theoretical , Pluripotent Stem Cells/cytology
7.
Cells ; 11(1)2021 12 22.
Article in English | MEDLINE | ID: mdl-35011586

ABSTRACT

Regenerative medicine aims to replace damaged tissues by stimulating endogenous tissue repair or by transplanting autologous or allogeneic cells. Due to their capacity to produce unlimited numbers of cells of a given cell type, pluripotent stem cells, whether of embryonic origin or induced via the reprogramming of somatic cells, are of considerable therapeutic interest in the regenerative medicine field. However, regardless of the cell type, host immune responses present a barrier to success. The aim of this study was to investigate in vitro the immunological properties of human pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLCs). These cells expressed MHC class I molecules while they lacked MHC class II and co-stimulatory molecules, such as CD80 and CD86. Following stimulation with IFN-γ, HLCs upregulated CD40, PD-L1 and MHC class I molecules. When co-cultured with allogeneic T cells, HLCs did not induce T cell proliferation; furthermore, when T cells were stimulated via αCD3/CD28 beads, HLCs inhibited their proliferation via IDO1 and tryptophan deprivation. These results demonstrate that PSC-derived HLCs possess immunoregulatory functions, at least in vitro.


Subject(s)
Hepatocytes/cytology , Induced Pluripotent Stem Cells/cytology , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Tryptophan/deficiency , Allogeneic Cells/cytology , Cell Proliferation , Humans , Immunologic Factors/metabolism , Immunophenotyping , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology
8.
iScience ; 24(1): 101931, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33409477

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis. Following induction of macrovesicular steatosis in hepatocyte-like cells using lactate, pyruvate, and octanoate (LPO), respirometry and transcriptomic analyses revealed compromised electron transport chain activity. 13C isotopic tracing studies revealed enhanced TCA cycle anaplerosis, with concomitant development of a compensatory purine nucleotide cycle shunt leading to excess generation of fumarate. This model of hepatic steatosis is reproducible, scalable, and overcomes the challenges of studying mitochondrial metabolism in currently available models.

9.
iScience ; 24(6): 102552, 2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34151225

ABSTRACT

Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-ß signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.

10.
J Vis Exp ; (159)2020 05 10.
Article in English | MEDLINE | ID: mdl-32449710

ABSTRACT

Liver disease is an escalating global health issue. While liver transplantation is an effective mode of therapy, patient mortality has increased due to shortages in donor organ availability. Organ scarcity also affects the routine supply of human hepatocytes for basic research and the clinic. Therefore, the development of renewable sources of human liver progenitor cells is desirable and is the goal of this study. To be able to effectively generate and deploy human liver progenitors on a large scale, a reproducible hepatic progenitor differentiation system was developed. This protocol aids experimental reproducibility between users in a range of cell cultureware formats and permits differentiations using both, human embryonic and induced pluripotent stem cell lines. These are important advantages over current differentiation systems that will enhance the basic research and may pave the way towards clinical product development.


Subject(s)
Cell Differentiation , Liver/cytology , Pluripotent Stem Cells/cytology , Cell Count , Cell Differentiation/drug effects , Cells, Cultured , Endoderm/cytology , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Image Processing, Computer-Assisted , Laminin/pharmacology , Pluripotent Stem Cells/drug effects , Reproducibility of Results
11.
J Vis Exp ; (149)2019 07 20.
Article in English | MEDLINE | ID: mdl-31380852

ABSTRACT

The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores.  Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Liver/cytology , Pluripotent Stem Cells/physiology , Cell Count , Cell Differentiation , Culture Media, Serum-Free , Humans , Spheroids, Cellular
12.
iScience ; 16: 206-217, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31185456

ABSTRACT

During mammalian development, liver differentiation is driven by signals that converge on multiple transcription factor networks. The hepatocyte nuclear factor signaling network is known to be essential for hepatocyte specification and maintenance. In this study, we have generated deletion and point mutants of hepatocyte nuclear factor-4alpha (HNF4α) to precisely evaluate the function of protein domains during hepatocyte specification from human pluripotent stem cells. We demonstrate that nuclear HNF4α is essential for hepatic progenitor specification, and the introduction of point mutations in HNF4α's Small Ubiquitin-like Modifier (SUMO) consensus motif leads to disrupted hepatocyte differentiation. Taking a multiomics approach, we identified key deficiencies in cell biology, which included dysfunctional metabolism, substrate adhesion, tricarboxylic acid cycle flux, microRNA transport, and mRNA processing. In summary, the combination of genome editing and multiomics analyses has provided valuable insight into the diverse functions of HNF4α during pluripotent stem cell entry into the hepatic lineage and during hepatocellular differentiation.

13.
J Vis Exp ; (137)2018 07 27.
Article in English | MEDLINE | ID: mdl-30102283

ABSTRACT

Human pluripotent stem cells represent a renewable source of human tissue. Our research is focused on generating human liver tissue from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Current differentiation procedures generate human hepatocyte-like cells (HLCs) displaying a mixture of fetal and adult traits. To improve cell phenotype, we have fully defined our differentiation procedure and the cell niche, resulting in the generation of cell populations which display improved gene expression and function. While these studies mark progress, the ability to generate large quantities of multi well plates for screening has been limited by labour intensive procedures and batch to batch variation. To tackle this issue, we have developed a semi-automated platform to differentiate pluripotent stem cells into HLCs. Stem cell seeding and differentiation were performed using liquid handling and automatic pipetting systems in 96-well plate format. Following the differentiation, cell phenotype was analyzed using automated microscopy and a multi well luminometer.


Subject(s)
Hepatocytes/metabolism , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Hepatocytes/cytology , Humans , Mice , Pluripotent Stem Cells/cytology
14.
AAPS J ; 20(2): 30, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29435689

ABSTRACT

The original version of the published article contains errors throughout the text, which were introduced by the typesetter when performing the author's proof corrections.

15.
Article in English | MEDLINE | ID: mdl-29786554

ABSTRACT

We describe the production of a human induced pluripotent stem cell (iPSC) line, SFCi55-ZsGr, that has been engineered to express the fluorescent reporter gene, ZsGreen, in a constitutive manner. The CAG-driven ZsGreen expression cassette was inserted into the AAVS1 locus and a high level of expression was observed in undifferentiated iPSCs and in cell lineages derived from all three germ layers including haematopoietic cells, hepatocytes and neurons. We demonstrate efficient production of terminally differentiated macrophages from the SFCi55-ZsGreen iPSC line and show that they are indistinguishable from those generated from their parental SFCi55 iPSC line in terms of gene expression, cell surface marker expression and phagocytic activity. The high level of ZsGreen expression had no effect on the ability of macrophages to be activated to an M(LPS + IFNγ), M(IL10) or M(IL4) phenotype nor on their plasticity, assessed by their ability to switch from one phenotype to another. Thus, targeting of the AAVS1 locus in iPSCs allows for the production of fully functional, fluorescently tagged human macrophages that can be used for in vivo tracking in disease models. The strategy also provides a platform for the introduction of factors that are predicted to modulate and/or stabilize macrophage function.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Subject(s)
Cell Differentiation , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Induced Pluripotent Stem Cells/physiology , Macrophages/metabolism , Cell Lineage/physiology , Germ Layers/growth & development , Humans
16.
Article in English | MEDLINE | ID: mdl-29786565

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in developed countries. An in vitro NAFLD model would permit mechanistic studies and enable high-throughput therapeutic screening. While hepatic cancer-derived cell lines are a convenient, renewable resource, their genomic, epigenomic and functional alterations mean their utility in NAFLD modelling is unclear. Additionally, the epigenetic mark 5-hydroxymethylcytosine (5hmC), a cell lineage identifier, is rapidly lost during cell culture, alongside expression of the Ten-eleven-translocation (TET) methylcytosine dioxygenase enzymes, restricting meaningful epigenetic analysis. Hepatocyte-like cells (HLCs) derived from human embryonic stem cells can provide a non-neoplastic, renewable model for liver research. Here, we have developed a model of NAFLD using HLCs exposed to lactate, pyruvate and octanoic acid (LPO) that bear all the hallmarks, including 5hmC profiles, of liver functionality. We exposed HLCs to LPO for 48 h to induce lipid accumulation. We characterized the transcriptome using RNA-seq, the metabolome using ultra-performance liquid chromatography-mass spectrometry and the epigenome using 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) sequencing. LPO exposure induced an NAFLD phenotype in HLCs with transcriptional and metabolomic dysregulation consistent with those present in human NAFLD. HLCs maintain expression of the TET enzymes and have a liver-like epigenome. LPO exposure-induced 5hmC enrichment at lipid synthesis and transport genes. HLCs treated with LPO recapitulate the transcriptional and metabolic dysregulation seen in NAFLD and additionally retain TET expression and 5hmC. This in vitro model of NAFLD will be useful for future mechanistic and therapeutic studies.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'.


Subject(s)
Hepatocytes/physiology , Non-alcoholic Fatty Liver Disease/physiopathology , Transcriptome/physiology , Caprylates/pharmacology , Humans , Lactic Acid/pharmacology , Non-alcoholic Fatty Liver Disease/chemically induced , Pyruvic Acid/pharmacology
17.
Stem Cells Int ; 2017: 5946527, 2017.
Article in English | MEDLINE | ID: mdl-29270200

ABSTRACT

Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 µM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

18.
AAPS J ; 20(1): 20, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29270863

ABSTRACT

Despite the improvements in drug screening, high levels of drug attrition persist. Although high-throughput screening platforms permit the testing of compound libraries, poor compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the reason for drug failure resides in the models employed, most of which are not representative of normal organ biology. This same problem affects all the major organs during drug development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease and can present in the late stages of drug development, resulting in major cost and increased risk to the patient. Currently, cell-based systems used within industry rely on immortalized or primary cell lines from donated tissue. These models possess significant advantages and disadvantages, but in general display limited relevance to the organ of interest. Recently, stem cell technology has shown promise in drug development and has been proposed as an alternative to current industrial systems. These offerings will provide the field with exciting new models to study human organ biology at scale and in detail. We believe that the recent advances in production of stem cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technologies make them an attractive alternative to current screening models for drug discovery. This will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious medicines for the patient.


Subject(s)
Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Pluripotent Stem Cells/physiology , Tissue Engineering/methods , Cell Culture Techniques/methods , Cell Differentiation , Cells, Cultured , Hepatocytes , Humans , Myocytes, Cardiac , Tissue Culture Techniques/methods , Tissue Culture Techniques/trends , Tissue Engineering/trends , Toxicity Tests/methods
19.
J Vis Exp ; (121)2017 03 02.
Article in English | MEDLINE | ID: mdl-28287600

ABSTRACT

Human pluripotent stem cells (hPSCs) possess great value for biomedical research. hPSCs can be scaled and differentiated to all cell types found in the human body. The differentiation of hPSCs to human hepatocyte-like cells (HLCs) has been extensively studied, and efficient differentiation protocols have been established. The combination of extracellular matrix and biological stimuli, including growth factors, cytokines, and small molecules, have made it possible to generate HLCs that resemble primary human hepatocytes. However, the majority of procedures still employ undefined components, giving rise to batch-to-batch variation. This serves as a significant barrier to the application of the technology. To tackle this issue, we developed a defined system for hepatocyte differentiation using human recombinant laminins as extracellular matrices in combination with a serum-free differentiation process. Highly efficient hepatocyte specification was achieved, with demonstrated improvements in both HLC function and phenotype. Importantly, this system is easy to scale up using research and GMP-grade hPSC lines promising advances in cell-based modelling and therapies.


Subject(s)
Hepatocytes/cytology , Pluripotent Stem Cells/cytology , Cell Count , Cell Differentiation , Extracellular Matrix/metabolism , Humans
20.
Stem Cells Int ; 2017: 4758930, 2017.
Article in English | MEDLINE | ID: mdl-28769981

ABSTRACT

Cartilage degeneration is associated with degenerative bone and joint processes in severe osteoarthritis (OA). Spontaneous cartilage regeneration is extremely limited. Often the treatment consists of a partial or complete joint implant. Adipose-derived stem cell (ASC) transplantation has been shown to restore degenerated cartilage; however, regenerative differences of ASC would depend on the source of adipose tissue. The infra- and suprapatellar fat pads surrounding the knee offer a potential autologous source of ASC for patients after complete joint substitution. When infrapatellar- and suprapatellar-derived stromal vascular fractions (SVF) were compared, a significantly higher CD105 (+) population was found in the suprapatellar fat. In addition, the suprapatellar SVF exhibited increased numbers of colony formation units and a higher population doubling in culture compared to the infrapatellar fraction. Both the suprapatellar- and infrapatellar-derived ASC were differentiated in vitro into mature adipocytes, osteocytes, and chondrocytes. However, the suprapatellar-derived ASC showed higher osteogenic and chondrogenic efficiency. Suprapatellar-derived ASC transplantation in a severe OA mouse model significantly diminished the OA-associated knee inflammation and cartilage degenerative grade, significantly increasing the production of glycosaminoglycan and inducing endogenous chondrogenesis in comparison with the control group. Overall, suprapatellar-derived ASC offer a potential autologous regenerative treatment for patients with multiple degenerative OA.

SELECTION OF CITATIONS
SEARCH DETAIL