Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters

Publication year range
1.
Emerg Infect Dis ; 26(3): 560-567, 2020 03.
Article in English | MEDLINE | ID: mdl-32091360

ABSTRACT

In 2012, a total of 9 cases of hantavirus infection occurred in overnight visitors to Yosemite Valley, Yosemite National Park, California, USA. In the 6 years after the initial outbreak investigation, the California Department of Public Health conducted 11 rodent trapping events in developed areas of Yosemite Valley and 6 in Tuolumne Meadows to monitor the relative abundance of deer mice (Peromyscus maniculatus) and seroprevalence of Sin Nombre orthohantavirus, the causative agent of hantavirus pulmonary syndrome. Deer mouse trap success in Yosemite Valley remained lower than that observed during the 2012 outbreak investigation. Seroprevalence of Sin Nombre orthohantavirus in deer mice during 2013-2018 was also lower than during the outbreak, but the difference was not statistically significant (p = 0.02). The decreased relative abundance of Peromyscus spp. mice in developed areas of Yosemite Valley after the outbreak is probably associated with increased rodent exclusion efforts and decreased peridomestic habitat.


Subject(s)
Hantavirus Infections/epidemiology , Orthohantavirus/isolation & purification , Animals , California/epidemiology , Disease Reservoirs , Hantavirus Infections/virology , Humans , Mice/virology , Parks, Recreational , Sin Nombre virus/isolation & purification
2.
Emerg Infect Dis ; 25(10): 1962-1964, 2019 10.
Article in English | MEDLINE | ID: mdl-31538924

ABSTRACT

We describe a case of hantavirus pulmonary syndrome in a patient exposed to Sin Nombre virus in a coastal county in California, USA, that had no previous record of human cases. Environmental evaluation coupled with genotypic analysis of virus isolates from the case-patient and locally trapped rodents identified the likely exposure location.


Subject(s)
Hantavirus Pulmonary Syndrome/epidemiology , Sin Nombre virus , Adult , Animals , California/epidemiology , Disease Vectors , Humans , Peromyscus/virology , Phylogeny , Rodentia/virology , Sin Nombre virus/genetics
3.
Emerg Infect Dis ; 24(9): 1626-1632, 2018 09.
Article in English | MEDLINE | ID: mdl-30124194

ABSTRACT

Zika and associated microcephaly among newborns were reported in Brazil during 2015. Zika has since spread across the Americas, and travel-associated cases were reported throughout the United States. We reviewed travel-associated Zika cases in California to assess the potential threat of local Zika virus transmission, given the regional spread of Aedes aegypti and Ae. albopictus mosquitoes. During November 2015-September 2017, a total of 588 travel-associated Zika cases were reported in California, including 139 infections in pregnant women, 10 congenital infections, and 8 sexually transmitted infections. Most case-patients reported travel to Mexico and Central America, and many returned during a period when they could have been viremic. By September 2017, Ae. aegypti mosquitoes had spread to 124 locations in California, and Ae. albopictus mosquitoes had spread to 53 locations. Continued human and mosquito surveillance and public health education are valuable tools in preventing and detecting Zika virus infections and local transmission in California.


Subject(s)
Aedes , Disease Outbreaks/prevention & control , Insect Vectors , Travel , Zika Virus Infection/epidemiology , Zika Virus/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , Animals , California/epidemiology , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Pregnancy , Young Adult , Zika Virus Infection/transmission
4.
Emerg Infect Dis ; 24(6): 1112-1115, 2018 06.
Article in English | MEDLINE | ID: mdl-29774841

ABSTRACT

The deer mouse (Peromyscus maniculatus) is the primary reservoir for Sin Nombre virus (SNV) in the western United States. Rodent surveillance for hantavirus in Death Valley National Park, California, USA, revealed cactus mice (P. eremicus) as a possible focal reservoir for SNV in this location. We identified SNV antibodies in 40% of cactus mice sampled.


Subject(s)
Hantavirus Infections/veterinary , Peromyscus/virology , Rodent Diseases/epidemiology , Rodent Diseases/virology , Sin Nombre virus/classification , Sin Nombre virus/genetics , Animals , California/epidemiology , Mice , Phylogeny , Seroepidemiologic Studies
6.
Genome Res ; 24(7): 1180-92, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24899342

ABSTRACT

Unbiased next-generation sequencing (NGS) approaches enable comprehensive pathogen detection in the clinical microbiology laboratory and have numerous applications for public health surveillance, outbreak investigation, and the diagnosis of infectious diseases. However, practical deployment of the technology is hindered by the bioinformatics challenge of analyzing results accurately and in a clinically relevant timeframe. Here we describe SURPI ("sequence-based ultrarapid pathogen identification"), a computational pipeline for pathogen identification from complex metagenomic NGS data generated from clinical samples, and demonstrate use of the pipeline in the analysis of 237 clinical samples comprising more than 1.1 billion sequences. Deployable on both cloud-based and standalone servers, SURPI leverages two state-of-the-art aligners for accelerated analyses, SNAP and RAPSearch, which are as accurate as existing bioinformatics tools but orders of magnitude faster in performance. In fast mode, SURPI detects viruses and bacteria by scanning data sets of 7-500 million reads in 11 min to 5 h, while in comprehensive mode, all known microorganisms are identified, followed by de novo assembly and protein homology searches for divergent viruses in 50 min to 16 h. SURPI has also directly contributed to real-time microbial diagnosis in acutely ill patients, underscoring its potential key role in the development of unbiased NGS-based clinical assays in infectious diseases that demand rapid turnaround times.


Subject(s)
Computational Biology/methods , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Databases, Nucleic Acid , Humans , ROC Curve , Reproducibility of Results , Software
7.
Clin Infect Dis ; 60(9): 1377-83, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25637586

ABSTRACT

BACKGROUND: We describe the spectrum of etiologies associated with temporal lobe (TL) encephalitis and identify clinical and radiologic features that distinguish herpes simplex encephalitis (HSE) from its mimics. METHODS: We reviewed all adult cases of encephalitis with TL abnormalities on magnetic resonance imaging (MRI) from the California Encephalitis Project. We evaluated the association between specific clinical and MRI characteristics and HSE compared with other causes of TL encephalitis and used multivariate logistic modeling to identify radiologic predictors of HSE. RESULTS: Of 251 cases of TL encephalitis, 43% had an infectious etiology compared with 16% with a noninfectious etiology. Of infectious etiologies, herpes simplex virus was the most commonly identified agent (n = 60), followed by tuberculosis (n = 8) and varicella zoster virus (n = 7). Of noninfectious etiologies, more than half (n = 21) were due to autoimmune disease. Patients with HSE were older (56.8 vs 50.2 years; P = .012), more likely to be white (53% vs 35%; P = .013), more likely to present acutely (88% vs 64%; P = .001) and with a fever (80% vs 49%; P < .001), and less likely to present with a rash (2% vs 15%; P = .010). In a multivariate model, bilateral TL involvement (odds ratio [OR], 0.38; 95% confidence interval [CI], .18-.79; P = .010) and lesions outside the TL, insula, or cingulate (OR, 0.37; 95% CI, .18-.74; P = .005) were associated with lower odds of HSE. CONCLUSIONS: In addition to HSE, other infectious and noninfectious etiologies should be considered in the differential diagnosis for TL encephalitis, depending on the presentation. Specific clinical and imaging features may aid in distinguishing HSE from non-HSE causes of TL encephalitis.


Subject(s)
Encephalitis, Herpes Simplex/diagnosis , Encephalitis/etiology , Neuroimaging , Temporal Lobe , Adolescent , Adult , Aged , California , Diagnosis, Differential , Encephalitis/diagnosis , Encephalitis/virology , Encephalitis, Varicella Zoster/diagnosis , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Models, Statistical , Multivariate Analysis , Retrospective Studies , Temporal Lobe/virology , Time Factors , Tuberculosis/diagnosis
8.
Am J Ind Med ; 58(6): 658-67, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25943457

ABSTRACT

BACKGROUND: During 2012, a total of 10 overnight visitors to Yosemite National Park (Yosemite) became infected with a hantavirus (Sin Nombre virus [SNV]); three died. SNV infections have been identified among persons with occupational exposure to deer mice (Peromyscus maniculatus). METHODS: We assessed SNV infection prevalence, work and living environments, mice exposures, and SNV prevention training, knowledge, and practices among workers of two major employers at Yosemite during September-October, 2012 by voluntary blood testing and a questionnaire. RESULTS: One of 526 participants had evidence of previous SNV infection. Participants reported frequently observing rodent infestations at work and home and not always following prescribed safety practices for tasks, including infestation cleanup. CONCLUSION: Although participants had multiple exposures to deer mice, we did not find evidence of widespread SNV infections. Nevertheless, employees working around deer mice should receive appropriate training and consistently follow prevention policies for high-risk activities.


Subject(s)
Antibodies, Viral/blood , Hantavirus Pulmonary Syndrome/blood , Occupational Diseases/blood , Peromyscus/virology , Sin Nombre virus/immunology , Animals , California , Hantavirus Pulmonary Syndrome/prevention & control , Hantavirus Pulmonary Syndrome/psychology , Hantavirus Pulmonary Syndrome/transmission , Health Knowledge, Attitudes, Practice , Humans , Occupational Diseases/prevention & control , Occupational Diseases/psychology , Occupational Exposure/prevention & control , Parks, Recreational , Seroepidemiologic Studies , Surveys and Questionnaires
9.
Emerg Infect Dis ; 20(3): 386-93, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24565589

ABSTRACT

In summer 2012, an outbreak of hantavirus infections occurred among overnight visitors to Yosemite National Park in California, USA. An investigation encompassing clinical, epidemiologic, laboratory, and environmental factors identified 10 cases among residents of 3 states. Eight case-patients experienced hantavirus pulmonary syndrome, of whom 5 required intensive care with ventilatory support and 3 died. Staying overnight in a signature tent cabin (9 case-patients) was significantly associated with becoming infected with hantavirus (p<0.001). Rodent nests and tunnels were observed in the foam insulation of the cabin walls. Rodent trapping in the implicated area resulted in high trap success rate (51%), and antibodies reactive to Sin Nombre virus were detected in 10 (14%) of 73 captured deer mice. All signature tent cabins were closed and subsequently dismantled. Continuous public awareness and rodent control and exclusion are key measures in minimizing the risk for hantavirus infection in areas inhabited by deer mice.


Subject(s)
Hantavirus Infections/epidemiology , Orthohantavirus/classification , Travel , Adolescent , Adult , California/epidemiology , Child , Disease Outbreaks , Environmental Monitoring , Orthohantavirus/genetics , Hantavirus Infections/diagnosis , Hantavirus Infections/history , Hantavirus Infections/prevention & control , History, 21st Century , Humans , Middle Aged , Risk Factors , Serotyping , Young Adult
10.
Lancet Reg Health Am ; 37: 100836, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39100240

ABSTRACT

Background: In the United States (U.S.), hantavirus pulmonary syndrome (HPS) and non-HPS hantavirus infection are nationally notifiable diseases. Criteria for identifying human cases are based on clinical symptoms (HPS or non-HPS) and acute diagnostic results (IgM+, rising IgG+ titers, RT-PCR+, or immunohistochemistry (IHC)+). Here we provide an overview of diagnostic testing and summarize human Hantavirus disease occurrence and genotype distribution in the U.S. from 2008 to 2020. Methods: Epidemiological data from the national hantavirus registry was merged with laboratory diagnostic testing results performed at the CDC. Residual hantavirus-positive specimens were sequenced, and the available epidemiological and genetic data sets were linked to conduct a genomic epidemiological study of hantavirus disease in the U.S. Findings: From 1993 to 2020, 833 human hantavirus cases have been identified, and from 2008 to 2020, 335 human cases have occurred. Among New World (NW) hantavirus cases detected at the CDC diagnostic laboratory (representing 29.2% of total cases), most (85.0%) were detected during acute disease, however, some convalescent cases were detected in states not traditionally associated with hantavirus infections (Connecticut, Missouri, New Jersey, Pennsylvania, Tennessee, and Vermont). From 1993 to 2020, 94.9% (745/785) of U.S. hantaviruses cases were detected west of the Mississippi with 45.7% (359/785) in the Four Corners region of the U.S. From 2008 to 2020, 67.7% of NW hantavirus cases were detected between the months of March and August. Sequencing of RT-PCR-positive cases demonstrates a geographic separation of Orthohantavirus sinnombreense species [Sin Nombre virus (SNV), New York virus, and Monongahela virus]; however, there is a large gap in viral sequence data from the Northwestern and Central U.S. Finally, these data indicate that commercial IgM assays are not concordant with CDC-developed assays, and that "concordant positive" (i.e., commercial IgM+ and CDC IgM+ results) specimens exhibit clinical characteristics of hantavirus disease. Interpretation: Hantaviral disease is broadly distributed in the contiguous U.S, viral variants are localised to specific geographic regions, and hantaviral disease infrequently detected in most Southeastern states. Discordant results between two diagnostic detection methods highlight the need for an improved standardised testing plan in the U.S. Hantavirus surveillance and detection will continue to improve with clearly defined, systematic reporting methods, as well as explicit guidelines for clinical characterization and diagnostic criteria. Funding: This work was funded by core funds provided to the Viral Special Pathogens Branch at CDC.

12.
Microb Genom ; 9(6)2023 06.
Article in English | MEDLINE | ID: mdl-37267020

ABSTRACT

The capacity for pathogen genomics in public health expanded rapidly during the coronavirus disease 2019 (COVID-19) pandemic, but many public health laboratories did not have the infrastructure in place to handle the vast amount of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data generated. The California Department of Public Health, in partnership with Theiagen Genomics, was an early adopter of cloud-based resources for bioinformatics and genomic epidemiology, resulting in the creation of a SARS-CoV-2 genomic surveillance system that combined the efforts of more than 40 sequencing laboratories across government, academia and industry to form California COVIDNet, California's SARS-CoV-2 Whole-Genome Sequencing Initiative. Open-source bioinformatics workflows, ongoing training sessions for the public health workforce, and automated data transfer to visualization tools all contributed to the success of California COVIDNet. While challenges remain for public health genomic surveillance worldwide, California COVIDNet serves as a framework for a scaled and successful bioinformatics infrastructure that has expanded beyond SARS-CoV-2 to other pathogens of public health importance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Public Health , Laboratories , Genomics , California/epidemiology
13.
Front Public Health ; 11: 1249614, 2023.
Article in English | MEDLINE | ID: mdl-37937074

ABSTRACT

Introduction: The SARS-CoV-2 pandemic represented a formidable scientific and technological challenge to public health due to its rapid spread and evolution. To meet these challenges and to characterize the virus over time, the State of California established the California SARS-CoV-2 Whole Genome Sequencing (WGS) Initiative, or "California COVIDNet". This initiative constituted an unprecedented multi-sector collaborative effort to achieve large-scale genomic surveillance of SARS-CoV-2 across California to monitor the spread of variants within the state, to detect new and emerging variants, and to characterize outbreaks in congregate, workplace, and other settings. Methods: California COVIDNet consists of 50 laboratory partners that include public health laboratories, private clinical diagnostic laboratories, and academic sequencing facilities as well as expert advisors, scientists, consultants, and contractors. Data management, sample sourcing and processing, and computational infrastructure were major challenges that had to be resolved in the midst of the pandemic chaos in order to conduct SARS-CoV-2 genomic surveillance. Data management, storage, and analytics needs were addressed with both conventional database applications and newer cloud-based data solutions, which also fulfilled computational requirements. Results: Representative and randomly selected samples were sourced from state-sponsored community testing sites. Since March of 2021, California COVIDNet partners have contributed more than 450,000 SARS-CoV-2 genomes sequenced from remnant samples from both molecular and antigen tests. Combined with genomes from CDC-contracted WGS labs, there are currently nearly 800,000 genomes from all 61 local health jurisdictions (LHJs) in California in the COVIDNet sequence database. More than 5% of all reported positive tests in the state have been sequenced, with similar rates of sequencing across 5 major geographic regions in the state. Discussion: Implementation of California COVIDNet revealed challenges and limitations in the public health system. These were overcome by engaging in novel partnerships that established a successful genomic surveillance program which provided valuable data to inform the COVID-19 public health response in California. Significantly, California COVIDNet has provided a foundational data framework and computational infrastructure needed to respond to future public health crises.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , California/epidemiology , Data Management
14.
PLoS One ; 17(12): e0278543, 2022.
Article in English | MEDLINE | ID: mdl-36455065

ABSTRACT

Co-infections or secondary infections with SARS-CoV-2 have the potential to affect disease severity and morbidity. Additionally, the potential influence of the nasal microbiome on COVID-19 illness is not well understood. In this study, we analyzed 203 residual samples, originally submitted for SARS-CoV-2 testing, for the presence of viral, bacterial, and fungal pathogens and non-pathogens using a comprehensive microarray technology, the Lawrence Livermore Microbial Detection Array (LLMDA). Eighty-seven percent of the samples were nasopharyngeal samples, and 23% of the samples were oral, nasal and oral pharyngeal swabs. We conducted bioinformatics analyses to examine differences in microbial populations of these samples, as a proxy for the nasal and oral microbiome, from SARS-CoV-2 positive and negative specimens. We found 91% concordance with the LLMDA relative to a diagnostic RT-qPCR assay for detection of SARS-CoV-2. Sixteen percent of all the samples (32/203) revealed the presence of an opportunistic bacterial or frank viral pathogen with the potential to cause co-infections. The two most detected bacteria, Streptococcus pyogenes and Streptococcus pneumoniae, were present in both SARS-CoV-2 positive and negative samples. Human metapneumovirus was the most prevalent viral pathogen in the SARS-CoV-2 negative samples. Sequence analysis of 16S rRNA was also conducted to evaluate bacterial diversity and confirm LLMDA results.


Subject(s)
COVID-19 , Coinfection , Microbiota , Humans , SARS-CoV-2/genetics , RNA, Ribosomal, 16S/genetics , COVID-19 Testing , Microbiota/genetics
15.
PLoS Negl Trop Dis ; 16(9): e0010738, 2022 09.
Article in English | MEDLINE | ID: mdl-36108065

ABSTRACT

Rocky Mountain spotted fever (RMSF) is a life-threatening tick-borne disease documented in North, Central, and South America. In California, RMSF is rare; nonetheless, recent fatal cases highlight ecological cycles of the two genera of ticks, Dermacentor and Rhipicephalus, known to transmit the disease. These ticks occur in completely different habitats (sylvatic and peridomestic, respectively) resulting in different exposure risks for humans. This study summarizes the demographic, exposure, and clinical aspects associated with the last 40 years of reported RMSF cases to the California Department of Public Health (CDPH). Seventy-eight RMSF cases with onsets from 1980 to 2019 were reviewed. The incidence of RMSF has risen in the last 20 years from 0.04 cases per million to 0.07 cases per million (a two-fold increase in reports), though the percentage of cases that were confirmed dropped significantly from 72% to 25% of all reported cases. Notably, Hispanic/Latino populations saw the greatest rise in incidence. Cases of RMSF in California result from autochthonous and out-of-state exposures. During the last 20 years, more cases reported exposure in Southern California or Mexico than in the previous 20 years. The driver of these epidemiologic changes is likely the establishment and expansion of Rhipicephalus sanguineus sensu lato ticks in Southern California and on-going outbreaks of RMSF in northern Mexico. Analysis of available electronically reported clinical data from 2011 to 2019 showed that 57% of reported cases presented with serious illness requiring hospitalization with a 7% mortality. The difficulty in recognizing RMSF is due to a non-specific clinical presentation; however, querying patients on the potential of tick exposure in both sylvatic and peridomestic environments may facilitate appropriate testing and treatment.


Subject(s)
Rhipicephalus sanguineus , Rhipicephalus , Rocky Mountain Spotted Fever , Animals , California/epidemiology , Disease Outbreaks , Humans , Rocky Mountain Spotted Fever/epidemiology
16.
PLoS Negl Trop Dis ; 16(8): e0010664, 2022 08.
Article in English | MEDLINE | ID: mdl-35939506

ABSTRACT

St. Louis encephalitis virus (SLEV) is an endemic flavivirus in the western and southeastern United States, including California. From 1938 to 2003, the virus was detected annually in California, but after West Nile virus (WNV) arrived in 2003, SLEV was not detected again until it re-emerged in Riverside County in 2015. The re-emerging virus in California and other areas of the western US is SLEV genotype III, which previously had been detected only in Argentina, suggesting a South American origin. This study describes SLEV activity in California since its re-emergence in 2015 and compares it to WNV activity during the same period. From 2015 to 2020, SLEV was detected in 1,650 mosquito pools and 26 sentinel chickens, whereas WNV was detected concurrently in 18,108 mosquito pools and 1,542 sentinel chickens from the same samples. There were 24 reported human infections of SLEV in 10 California counties, including two fatalities (case fatality rate: 8%), compared to 2,469 reported human infections of WNV from 43 California counties, with 143 fatalities (case fatality rate: 6%). From 2015 through 2020, SLEV was detected in 17 (29%) of California's 58 counties, while WNV was detected in 54 (93%). Although mosquitoes and sentinel chickens have been tested routinely for arboviruses in California for over fifty years, surveillance has not been uniform throughout the state. Of note, since 2005 there has been a steady decline in the use of sentinel chickens among vector control agencies, potentially contributing to gaps in SLEV surveillance. The incidence of SLEV disease in California may have been underestimated because human surveillance for SLEV relied on an environmental detection to trigger SLEV patient screening and mosquito surveillance effort is spatially variable. In addition, human diagnostic testing usually relies on changes in host antibodies and SLEV infection can be indistinguishable from infection with other flaviviruses such as WNV, which is more prevalent.


Subject(s)
Culicidae , Encephalitis, St. Louis , West Nile Fever , West Nile virus , Animals , Chickens , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/epidemiology , Humans , Mosquito Vectors , West Nile Fever/epidemiology , West Nile Fever/veterinary
17.
Viruses ; 14(12)2022 12 13.
Article in English | MEDLINE | ID: mdl-36560780

ABSTRACT

Genetic analysis of intra-host viral populations provides unique insight into pre-emergent mutations that may contribute to the genotype of future variants. Clinical samples positive for SARS-CoV-2 collected in California during the first months of the pandemic were sequenced to define the dynamics of mutation emergence as the virus became established in the state. Deep sequencing of 90 nasopharyngeal samples showed that many mutations associated with the establishment of SARS-CoV-2 globally were present at varying frequencies in a majority of the samples, even those collected as the virus was first detected in the US. A subset of mutations that emerged months later in consensus sequences were detected as subconsensus members of intra-host populations. Spike mutations P681H, H655Y, and V1104L were detected prior to emergence in variant genotypes, mutations were detected at multiple positions within the furin cleavage site, and pre-emergent mutations were identified in the nucleocapsid and the envelope genes. Because many of the samples had a very high depth of coverage, a bioinformatics pipeline, "Mappgene", was established that uses both iVar and LoFreq variant calling to enable identification of very low-frequency variants. This enabled detection of a spike protein deletion present in many samples at low frequency and associated with a variant of concern.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Mutation , Computational Biology , Spike Glycoprotein, Coronavirus/genetics
18.
Pediatr Crit Care Med ; 12(4): e160-5, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20711084

ABSTRACT

OBJECTIVES: To identify the respiratory viral pathogens associated with acute lower respiratory tract infection in critically ill pediatric patients by using real-time reverse transcription-polymerase chain reaction, and compare results with those of direct fluorescence antibody assay testing. DESIGN: Observational cohort study. SETTING: Pediatric intensive care unit at a tertiary care academic hospital. PATIENTS: Pediatric patients admitted to the pediatric intensive care unit with severe respiratory symptoms consistent with viral lower respiratory tract infection. INTERVENTIONS: None. MEASUREMENTS: Respiratory samples of pediatric patients admitted to the pediatric intensive care unit with severe respiratory symptoms between January 2008 and July 2009 were tested with direct fluorescence antibody assay and real-time reverse transcription-polymerase chain reaction. MAIN RESULTS: At least one viral agent was detected in 70.5% of specimens by real-time reverse transcription-polymerase chain reaction and in 16.5% by direct fluorescence antibody assay (p < .001). Real-time reverse transcription-polymerase chain reaction increased the total viral yield five-fold compared to direct fluorescence antibody assay. Rhinovirus was the most commonly identified virus (41.6%). For viruses included in the direct fluorescence antibody assay panel, direct fluorescence antibody assay had a sensitivity of 0.42 (95% confidence interval 0.25-0.61) and a specificity of 1 (95% confidence interval 0.86-1.00) compared with real-time reverse transcription-polymerase chain reaction. Coinfections were not uncommon, in particular with rhinovirus, and these patients tended to have higher mortality. CONCLUSIONS: Direct fluorescence antibody assay testing is a suboptimal method for the detection of respiratory viruses in critically ill children with lower respiratory tract infection. Given the importance of a prompt and accurate viral diagnosis for this group of patients, we suggest that real-time reverse transcription-polymerase chain reaction becomes part of the routine diagnostic algorithm in critically ill children when a viral etiology is suspected, even if conventional tests yield a negative result.


Subject(s)
RNA Viruses/isolation & purification , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/virology , Reverse Transcriptase Polymerase Chain Reaction , Acute Disease , Algorithms , Child, Preschool , Cohort Studies , Critical Illness , Female , Fluorescent Antibody Technique, Direct , Humans , Infant , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Orthomyxoviridae/isolation & purification , Picornaviridae Infections/diagnosis , Picornaviridae Infections/virology , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/isolation & purification , Respiratory Tract Infections/diagnosis , Respirovirus/isolation & purification , Respirovirus Infections/diagnosis , Respirovirus Infections/virology , Rhinovirus/isolation & purification , Sensitivity and Specificity
19.
PLoS Negl Trop Dis ; 14(11): e0008841, 2020 11.
Article in English | MEDLINE | ID: mdl-33206634

ABSTRACT

The California Arbovirus Surveillance Program was initiated over 50 years ago to track endemic encephalitides and was enhanced in 2000 to include West Nile virus (WNV) infections in humans, mosquitoes, sentinel chickens, dead birds and horses. This comprehensive statewide program is a function of strong partnerships among the California Department of Public Health (CDPH), the University of California, and local vector control and public health agencies. This manuscript summarizes WNV surveillance data in California since WNV was first detected in 2003 in southern California. From 2003 through 2018, 6,909 human cases of WNV disease, inclusive of 326 deaths, were reported to CDPH, as well as 730 asymptomatic WNV infections identified during screening of blood and organ donors. Of these, 4,073 (59.0%) were reported as West Nile neuroinvasive disease. California's WNV disease burden comprised 15% of all cases that were reported to the U.S. Centers for Disease Control and Prevention during this time, more than any other state. Additionally, 1,299 equine WNV cases were identified, along with detections of WNV in 23,322 dead birds, 31,695 mosquito pools, and 7,340 sentinel chickens. Annual enzootic detection of WNV typically preceded detection in humans and prompted enhanced intervention to reduce the risk of WNV transmission. Peak WNV activity occurred from July through October in the Central Valley and southern California. Less than five percent of WNV activity occurred in other regions of the state or outside of this time. WNV continues to be a major threat to public and wild avian health in California, particularly in southern California and the Central Valley during summer and early fall months. Local and state public health partners must continue statewide human and mosquito surveillance and facilitate effective mosquito control and bite prevention measures.


Subject(s)
Epidemiological Monitoring , West Nile Fever/epidemiology , West Nile Fever/veterinary , West Nile virus/isolation & purification , Animals , Base Sequence , Birds/virology , California/epidemiology , Chickens/virology , Culex/virology , Horses/virology , Humans , Mosquito Vectors/classification , Mosquito Vectors/virology , RNA, Viral/genetics , Seasons , Sequence Analysis, RNA , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL