Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
PLoS Pathog ; 13(1): e1006130, 2017 01.
Article in English | MEDLINE | ID: mdl-28095465

ABSTRACT

Differentiation of extracellular Leishmania promastigotes within their sand fly vector, termed metacyclogenesis, is considered to be essential for parasites to regain mammalian host infectivity. Metacyclogenesis is accompanied by changes in the local parasite environment, including secretion of complex glycoconjugates within the promastigote secretory gel and colonization and degradation of the sand fly stomodeal valve. Deletion of the stage-regulated HASP and SHERP genes on chromosome 23 of Leishmania major is known to stall metacyclogenesis in the sand fly but not in in vitro culture. Here, parasite mutants deficient in specific genes within the HASP/SHERP chromosomal region have been used to investigate their role in metacyclogenesis, parasite transmission and establishment of infection. Metacyclogenesis was stalled in HASP/SHERP mutants in vivo and, although still capable of osmotaxis, these mutants failed to secrete promastigote secretory gel, correlating with a lack of parasite accumulation in the thoracic midgut and failure to colonise the stomodeal valve. These defects prevented parasite transmission to a new mammalian host. Sand fly midgut homogenates modulated parasite behaviour in vitro, suggesting a role for molecular interactions between parasite and vector in Leishmania development within the sand fly. For the first time, stage-regulated expression of the small HASPA proteins in Leishmania (Leishmania) has been demonstrated: HASPA2 is expressed only in extracellular promastigotes and HASPA1 only in intracellular amastigotes. Despite its lack of expression in amastigotes, replacement of HASPA2 into the null locus background delays onset of pathology in BALB/c mice. This HASPA2-dependent effect is reversed by HASPA1 gene addition, suggesting that the HASPAs may have a role in host immunomodulation.


Subject(s)
Host-Parasite Interactions/physiology , Leishmania major/pathogenicity , Leishmaniasis/transmission , Protozoan Proteins/metabolism , Virulence/physiology , Animals , Antigens, Protozoan/metabolism , Cell Differentiation/physiology , Disease Models, Animal , Fluorescent Antibody Technique , Immunoblotting , Insect Vectors/parasitology , Leishmania major/growth & development , Leishmaniasis/genetics , Mice , Mice, Inbred BALB C , Polymerase Chain Reaction , Psychodidae/parasitology
2.
Front Immunol ; 9: 2855, 2018.
Article in English | MEDLINE | ID: mdl-30619253

ABSTRACT

Infection with certain bacteria, parasites, and viruses alters the host immune system to Leishmania major influencing disease outcome. Here, we determined the outcome of a chronic infection with Trypanosoma brucei brucei on cutaneous leishmaniasis (CL) caused by L. major. C57BL/6 mice infected with T. b. brucei were given a sub-curative treatment with diminazene aceturate then coinfected with L. major by vector bites. Our results revealed that infection with T. b. brucei controls CL pathology. Compared to controls, coinfected mice showed a significant decrease in lesion size (P < 0.05) up to 6 weeks post-infection and a significant decrease in parasite burden (P < 0.0001) at 3 weeks post-infection. Protection against L. major resulted from a non-specific activation of T cells by trypanosomes. This induced a strong immune response characterized by IFN-γ production at the site of bites and systemically, creating a hostile inflammatory environment for L. major parasites and conferring protection from CL.


Subject(s)
Coinfection/immunology , Leishmania major/immunology , Leishmaniasis, Cutaneous/immunology , Trypanosoma brucei brucei/immunology , Trypanosomiasis/immunology , Animals , Antiprotozoal Agents/pharmacology , Coinfection/parasitology , Coinfection/prevention & control , Diminazene/analogs & derivatives , Diminazene/pharmacology , Female , Interferon-gamma/immunology , Interferon-gamma/metabolism , Leishmania major/physiology , Leishmaniasis, Cutaneous/parasitology , Mice, Inbred C57BL , Trypanosoma brucei brucei/physiology , Trypanosomiasis/parasitology
3.
NPJ Vaccines ; 2: 23, 2017.
Article in English | MEDLINE | ID: mdl-29263878

ABSTRACT

Vaccine development for vector-borne pathogens may be accelerated through the use of relevant challenge models, as has been the case for malaria. Because of the demonstrated biological importance of vector-derived molecules in establishing natural infections, incorporating natural challenge models into vaccine development strategies may increase the accuracy of predicting efficacy under field conditions. Until recently, however, there was no natural challenge model available for the evaluation of vaccine candidates against visceral leishmaniasis. We previously demonstrated that a candidate vaccine against visceral leishmaniasis containing the antigen LEISH-F3 could provide protection in preclinical models and induce potent T-cell responses in human volunteers. In the present study, we describe a next generation candidate, LEISH-F3+, generated by adding a third antigen to the LEISH-F3 di-fusion protein. The rationale for adding a third component, derived from cysteine protease (CPB), was based on previously demonstrated protection achieved with this antigen, as well as on recognition by human T cells from individuals with latent infection. Prophylactic immunization with LEISH-F3+formulated with glucopyranosyl lipid A adjuvant in stable emulsion significantly reduced both Leishmania infantum and L. donovani burdens in needle challenge mouse models of infection. Importantly, the data obtained in these infection models were validated by the ability of LEISH-F3+/glucopyranosyl lipid A adjuvant in stable emulsion to induce significant protection in hamsters, a model of both infection and disease, following challenge by L. donovani-infected Lutzomyia longipalpis sand flies, a natural vector. This is an important demonstration of vaccine protection against visceral leishmaniasis using a natural challenge model.

SELECTION OF CITATIONS
SEARCH DETAIL