Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Am J Physiol Renal Physiol ; 319(6): F1135-F1148, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33166182

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-ß1 (TGF-ß1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-ß1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-ß1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-ß1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-ß1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-ß1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.


Subject(s)
Kidney/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Transforming Growth Factor beta1/metabolism , Animals , Apoptosis , Cell Proliferation , Disease Models, Animal , Disease Progression , Epithelial-Mesenchymal Transition , Female , Fibrosis , Kidney/pathology , Kidney/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mutation , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/physiopathology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Time Factors , Transforming Growth Factor beta1/genetics
2.
J Mol Cell Biol ; 14(7)2022 09 27.
Article in English | MEDLINE | ID: mdl-36002021

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-ß and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Humans , Polycystic Kidney, Autosomal Dominant/metabolism , AMP-Activated Protein Kinases/metabolism , Calcium , Polycystic Kidney Diseases/metabolism , TOR Serine-Threonine Kinases/metabolism , Kidney/metabolism , Cell Proliferation , Mammals , Calcium-Calmodulin-Dependent Protein Kinase Type 4
SELECTION OF CITATIONS
SEARCH DETAIL