Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
Add more filters

Publication year range
1.
Mol Psychiatry ; 29(5): 1427-1439, 2024 May.
Article in English | MEDLINE | ID: mdl-38287100

ABSTRACT

One mechanism of particular interest to regulate mRNA fate post-transcriptionally is mRNA modification. Especially the extent of m1A mRNA methylation is highly discussed due to methodological differences. However, one single m1A site in mitochondrial ND5 mRNA was unanimously reported by different groups. ND5 is a subunit of complex I of the respiratory chain. It is considered essential for the coupling of oxidation and proton transport. Here we demonstrate that this m1A site might be involved in the pathophysiology of Alzheimer's disease (AD). One of the pathological hallmarks of this neurodegenerative disease is mitochondrial dysfunction, mainly induced by Amyloid ß (Aß). Aß mainly disturbs functions of complex I and IV of the respiratory chain. However, the molecular mechanism of complex I dysfunction is still not fully understood. We found enhanced m1A methylation of ND5 mRNA in an AD cell model as well as in AD patients. Formation of this m1A methylation is catalyzed by increased TRMT10C protein levels, leading to translation repression of ND5. As a consequence, here demonstrated for the first time, TRMT10C induced m1A methylation of ND5 mRNA leads to mitochondrial dysfunction. Our findings suggest that this newly identified mechanism might be involved in Aß-induced mitochondrial dysfunction.


Subject(s)
Adenosine , Alzheimer Disease , Amyloid beta-Peptides , Electron Transport Complex I , Mitochondria , RNA, Messenger , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , RNA, Messenger/metabolism , Adenosine/metabolism , Mitochondria/metabolism , Methylation , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Amyloid beta-Peptides/metabolism , Male , Female , Aged , Methyltransferases/metabolism , Methyltransferases/genetics , Aged, 80 and over , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics
2.
Mol Biol Rep ; 48(2): 1951-1957, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33481178

ABSTRACT

Current methods of CRISPR-Cas9-mediated site-specific mutagenesis create deletions and small insertions at the target site which are repaired by imprecise non-homologous end-joining. Targeting of the Cas9 nuclease relies on a short guide RNA (gRNA) corresponding to the genome sequence approximately at the intended site of intervention. We here propose an improved version of CRISPR-Cas9 genome editing that relies on two complementary guide RNAs instead of one. Two guide RNAs delimit the intervention site and allow the precise deletion of several nucleotides at the target site. As proof of concept, we generated heterozygous deletion mutants of the kcng4b, gdap1, and ghitm genes in the zebrafish Danio rerio using this method. A further analysis by high-resolution DNA melting demonstrated a high efficiency and a low background of unpredicted mutations. The use of two complementary gRNAs improves CRISPR-Cas9 specificity and allows the creation of predictable and precise mutations in the genome of D. rerio.


Subject(s)
CRISPR-Cas Systems , Gene Editing/methods , RNA, Guide, Kinetoplastida/genetics , Zebrafish/genetics , Animals , Gene Deletion , Heterozygote , Nerve Tissue Proteins/genetics , Nucleic Acid Denaturation , Voltage-Dependent Anion Channels/genetics , Zebrafish Proteins/genetics
3.
Eur Heart J ; 39(38): 3528-3539, 2018 10 07.
Article in English | MEDLINE | ID: mdl-29905797

ABSTRACT

Aims: Aircraft noise causes endothelial dysfunction, oxidative stress, and inflammation. Transportation noise increases the incidence of coronary artery disease, hypertension, and stroke. The underlying mechanisms are not well understood. Herein, we investigated effects of phagocyte-type NADPH oxidase (Nox2) knockout and different noise protocols (around-the-clock, sleep/awake phase noise) on vascular and cerebral complications in mice. Methods and results: C57BL/6j and Nox2-/- (gp91phox-/-) mice were exposed to aircraft noise (maximum sound level of 85 dB(A), average sound pressure level of 72 dB(A)) around-the-clock or during sleep/awake phases for 1, 2, and 4 days. Adverse effects of around-the-clock noise on the vasculature and brain were mostly prevented by Nox2 deficiency. Around-the-clock aircraft noise of the mice caused the most pronounced vascular effects and dysregulation of Foxo3/circadian clock as revealed by next generation sequencing (NGS), suggesting impaired sleep quality in exposed mice. Accordingly, sleep but not awake phase noise caused increased blood pressure, endothelial dysfunction, increased markers of vascular/systemic oxidative stress, and inflammation. Noise also caused cerebral oxidative stress and inflammation, endothelial and neuronal nitric oxide synthase (e/nNOS) uncoupling, nNOS mRNA and protein down-regulation, and Nox2 activation. NGS revealed similarities in adverse gene regulation between around-the-clock and sleep phase noise. In patients with established coronary artery disease, night-time aircraft noise increased oxidative stress, and inflammation biomarkers in serum. Conclusion: Aircraft noise increases vascular and cerebral oxidative stress via Nox2. Sleep deprivation and/or fragmentation caused by noise triggers vascular dysfunction. Thus, preventive measures that reduce night-time aircraft noise are warranted.


Subject(s)
Aircraft , Brain/physiopathology , Endothelium, Vascular/physiopathology , NADPH Oxidase 2/physiology , Noise, Transportation/adverse effects , Sleep Deprivation/physiopathology , Animals , Circadian Clocks/physiology , Cyclic GMP/metabolism , Gene Expression Regulation , Hemodynamics/physiology , Humans , Inflammation/physiopathology , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Nitric Oxide Synthase Type I/metabolism , Oxidative Stress , Signal Transduction
4.
Biochim Biophys Acta ; 1859(7): 833-40, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27080130

ABSTRACT

The human genomic locus for the transcription factor TOX3 has been implicated in susceptibility to restless legs syndrome and breast cancer in genome-wide association studies, but the physiological role of TOX3 remains largely unknown. We found Tox3 to be predominantly expressed in the developing mouse brain with a peak at embryonic day E14 where it co-localizes with the neural stem and progenitor markers Nestin and Sox2 in radial glia of the ventricular zone and intermediate progenitors of the subventricular zone. Tox3 is also expressed in neural progenitor cells obtained from the ganglionic eminence of E15 mice that express Nestin, and it specifically binds the Nestin promoter in chromatin immunoprecipitation assays. In line with this, over-expression of Tox3 increased Nestin promoter activity, which was cooperatively enhanced by treatment with the stem cell self-renewal promoting Notch ligand Jagged and repressed by pharmacological inhibition of Notch signaling. Knockdown of Tox3 in the subventricular zone of E12.5 mouse embryos by in utero electroporation of Tox3 shRNA revealed a reduced Nestin expression and decreased proliferation at E14 and a reduced migration to the cortical plate in E16 embryos in electroporated cells. Together, these results argue for a role of Tox3 in the development of the nervous system.


Subject(s)
Neural Stem Cells/physiology , Neurogenesis/genetics , Receptors, Progesterone/physiology , Animals , Apoptosis Regulatory Proteins , Cells, Cultured , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Neurons/physiology , Pregnancy , RNA, Small Interfering/pharmacology , Receptors, Progesterone/antagonists & inhibitors , Receptors, Progesterone/genetics , Trans-Activators
5.
J Neurochem ; 143(5): 523-533, 2017 12.
Article in English | MEDLINE | ID: mdl-28921587

ABSTRACT

Dimethyl fumarate (DMF) is an immunomodulatory compound to treat multiple sclerosis and psoriasis with neuroprotective potential. Its mechanism of action involves activation of the antioxidant pathway regulator Nuclear factor erythroid 2-related factor 2 thereby increasing synthesis of the cellular antioxidant glutathione (GSH). The objective of this study was to investigate whether post-traumatic DMF treatment is beneficial after experimental traumatic brain injury (TBI). Adult C57Bl/6 mice were subjected to controlled cortical impact followed by oral administration of DMF (80 mg/kg body weight) or vehicle at 3, 24, 48, and 72 h after the inflicted TBI. At 4 days after lesion (dal), DMF-treated mice displayed less neurological deficits than vehicle-treated mice and reduced histopathological brain damage. At the same time, the TBI-evoked depletion of brain GSH was prevented by DMF treatment. However, nuclear factor erythroid 2-related factor 2 target gene mRNA expression involved in antioxidant and detoxifying pathways was increased in both treatment groups at 4 dal. Blood brain barrier leakage, as assessed by immunoglobulin G extravasation, inflammatory marker mRNA expression, and CD45+ leukocyte infiltration into the perilesional brain tissue was induced by TBI but not significantly altered by DMF treatment. Collectively, our data demonstrate that post-traumatic DMF treatment improves neurological outcome and reduces brain tissue loss in a clinically relevant model of TBI. Our findings suggest that DMF treatment confers neuroprotection after TBI via preservation of brain GSH levels rather than by modulating neuroinflammation.


Subject(s)
Antioxidants/pharmacology , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Dimethyl Fumarate/pharmacology , Neuroprotection/drug effects , Animals , Blood-Brain Barrier/metabolism , Disease Models, Animal , Glutathione/metabolism , Male , Mice, Inbred C57BL , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects
6.
Biochem Biophys Res Commun ; 483(4): 1194-1205, 2017 Feb 19.
Article in English | MEDLINE | ID: mdl-27553284

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disease caused by a polyglutamine expansion within the huntingtin (HTT) gene. One of the cellular functions that is dysregulated in HD is store-operated calcium entry (SOCE), a process in which the depletion of Ca2+ from the endoplasmic reticulum (ER) induces Ca2+ influx from the extracellular space. We detected an enhanced activity of SOC channels in medium spiny neurons (MSNs) from YAC128 mice, a transgenic model of HD, and investigated whether this could be reverted by tetrahydrocarbazoles. The compound 6-bromo-N-(2-phenylethyl)-2,3,4,9-tetrahydro-1H-carbazol-1-amine hydrochloride was indeed able to restore the disturbed Ca2+ homeostasis and stabilize SOCE in YAC128 MSN cultures. We also detected a beneficial effect of this compound on the mitochondrial membrane potential. Since dysregulated Ca2+ homeostasis is believed to be one of the pathological hallmarks of HD, this compound might be a lead structure for HD treatment.


Subject(s)
Calcium/metabolism , Carbazoles/pharmacology , Neurons/drug effects , Animals , Cells, Cultured , Culture Media , Endoplasmic Reticulum/metabolism , Homeostasis , Ion Transport , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Transgenic , Neurons/metabolism
7.
J Neuroinflammation ; 14(1): 9, 2017 01 13.
Article in English | MEDLINE | ID: mdl-28086920

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System xc- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. METHODS: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system xc-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT-/-) mice and irradiated mice reconstituted in xCT-/- bone marrow (BM), to their proper wild type (xCT+/+) controls. RESULTS: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT+/+ mice, xCT-/- mice were equally susceptible to EAE, whereas mice transplanted with xCT-/- BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. CONCLUSIONS: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system xc- on immune cells invading the CNS participates to EAE. Since a total loss of system xc- had no net beneficial effects, these results have important implications for targeting system xc- for treatment of MS.


Subject(s)
Amino Acid Transport System y+/deficiency , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immunity, Cellular/physiology , Multiple Sclerosis/metabolism , Aged , Aged, 80 and over , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/immunology , Animals , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/pathology , Microglia/physiology , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology
8.
Biochim Biophys Acta ; 1853(9): 2104-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25764978

ABSTRACT

Bax inhibitor-1 (BI-1) is an evolutionarily conserved pH-dependent Ca²âº leak channel in the endoplasmic reticulum and the founding member of a family of six highly hydrophobic mammalian proteins named transmembrane BAX inhibitor motif containing (TMBIM) 1-6 with BI-1 being TMBIM6. Here we compared the structure, subcellular localization, tissue expression and the effect on the cellular Ca²âº homeostasis of all family members side by side. We found that all TMBIM proteins possess the di-aspartyl pH sensor responsible for pH sensing identified in TMBIM6 and its bacterial homologue BsYetJ. TMBIM1-3 and TMBIM4-6 represent two phylogenetically distinct groups that are localized in the Golgi apparatus (TMBIM1-3), endoplasmic reticulum (TMBIM4-6) or mitochondria (TMBIM5) but share a common structure of at least seven transmembrane domains with the last domain being semi-hydrophobic. TMBIM1 is mainly expressed in muscle, TMBIM2 and 3 in the nervous system, TMBIM4 and 5 are ubiquitously expressed and TMBIM6 in skeletal muscle, kidney, liver and spleen. All TMBIM proteins reduce the Ca²âº content of the endoplasmic reticulum, and all but TMBIM5 also reduce the cytosolic resting Ca²âº concentration. These results suggest that the TMBIM family has comparable functions in the maintenance of intracellular Ca²âº homeostasis in a wide variety of tissues. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , Golgi Apparatus/metabolism , Homeostasis/physiology , Membrane Proteins/biosynthesis , Amino Acid Motifs , Cell Line , Endoplasmic Reticulum/genetics , Golgi Apparatus/genetics , Humans , Membrane Proteins/genetics , Organ Specificity/physiology
9.
Biochem J ; 462(1): 125-32, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24869658

ABSTRACT

GPR39 is a G-protein-coupled zinc receptor that protects against diverse effectors of cell death. Its protective activity is mediated via constitutive activation of Gα13 and the RhoA pathway, leading to increased SRE (serum-response element)-dependent transcription; the zinc-dependent immediate activation of GPR39 involves Gq-mediated increases in cytosolic Ca2+ and Gs coupling leading to increased cAMP levels. We used the cytosolic and soluble C-terminus of GPR39 in a Y2H (yeast-2-hybrid) screen for interacting proteins, thus identifying PKIB (protein kinase A inhibitor ß). Co-expression of GPR39 with PKIB increased the protective activity of GPR39 via the constitutive, but not the ligand-mediated, pathway. PKIB inhibits protein kinase A by direct interaction with its pseudosubstrate domain; mutation of this domain abolished the inhibitory activity of PKIB on protein kinase A activity, but had no effect on the interaction with GPR39, cell protection and induction of SRE-dependent transcription. Zinc caused dissociation of PKIB from GPR39, thereby liberating it to associate with protein kinase A and inhibit its activity, which would result in a negative-feedback loop with the ability to limit activation of the Gs pathway by zinc.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Protein Kinase Inhibitors/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , CHO Cells , Cell Line , Cell Membrane/metabolism , Cricetulus , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/biosynthesis , Mice , Two-Hybrid System Techniques , Zinc/metabolism , Zinc/pharmacology
10.
J Biol Chem ; 288(52): 37204-15, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24240096

ABSTRACT

Apoptosis and autophagy are fundamental homeostatic processes in eukaryotic organisms fulfilling essential roles in development and adaptation. Recently, the anti-apoptotic factor Bcl-2 has been reported to also inhibit autophagy, thus establishing a potential link between these pathways, but the mechanistic details are only beginning to emerge. Here we show that Bcl-2 directly binds to the phagophore-associated protein GABARAP. NMR experiments revealed that the interaction critically depends on a three-residue segment (EWD) of Bcl-2 adjacent to the BH4 region, which is anchored to one of the two hydrophobic pockets on the GABARAP molecule. This is at variance with the majority of GABARAP interaction partners identified previously, which occupy both hydrophobic pockets simultaneously. Bcl-2 affinity could also be detected for GEC1, but not for other mammalian Atg8 homologs. Finally, we provide evidence that overexpression of Bcl-2 inhibits lipidation of GABARAP, a key step in autophagosome formation, possibly via competition with the lipid conjugation machinery. These results support the regulatory role of Bcl-2 in autophagy and define GABARAP as a novel interaction partner involved in this intricate connection.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Cytoskeletal Proteins/metabolism , Lipoylation/physiology , Membrane Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Animals , Apoptosis/physiology , Apoptosis Regulatory Proteins , Cell Line, Transformed , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/genetics , Rats
11.
Hum Mol Genet ; 21(1): 150-62, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-21965300

ABSTRACT

Mutations in GDAP1 lead to recessively or dominantly inherited peripheral neuropathies (Charcot-Marie-Tooth disease, CMT), indicating that GDAP1 is essential for the viability of cells in the peripheral nervous system. GDAP1 contains domains characteristic of glutathione-S-transferases (GSTs), is located in the outer mitochondrial membrane and induces fragmentation of mitochondria. We found GDAP1 upregulated in neuronal HT22 cells selected for resistance against oxidative stress. GDAP1 over-expression protected against oxidative stress caused by depletion of the intracellular antioxidant glutathione (GHS) and against effectors of GHS depletion that affect the mitochondrial membrane integrity like truncated BH3-interacting domain death agonist and 12/15-lipoxygenase. Gdap1 knockdown, in contrast, increased the susceptibility of motor neuron-like NSC34 cells against GHS depletion. Over-expression of wild-type GDAP1, but not of GDAP1 with recessively inherited mutations that cause disease and reduce fission activity, increased the total cellular GHS content and the mitochondrial membrane potential up to a level where it apparently limits mitochondrial respiration, leading to reduced mitochondrial Ca(2+) uptake and superoxide production. Fibroblasts from autosomal-recessive CMT4A patients had reduced GDAP1 levels, reduced GHS concentration and a reduced mitochondrial membrane potential. Thus, our results suggest that the potential GST GDAP1 is implicated in the control of the cellular GHS content and mitochondrial activity, suggesting an involvement of oxidative stress in the pathogenesis of CMT4A.


Subject(s)
Charcot-Marie-Tooth Disease/metabolism , Glutathione/metabolism , Membrane Potential, Mitochondrial , Nerve Tissue Proteins/metabolism , Cell Line , Charcot-Marie-Tooth Disease/genetics , Humans , Mitochondria/metabolism , Nerve Tissue Proteins/genetics , Oxidative Stress
12.
Cell Tissue Res ; 357(2): 395-405, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24715113

ABSTRACT

Cerebral ischemia is a key pathophysiological feature of various brain insults. Inadequate oxygen supply can manifest regionally in stroke or as a result of traumatic brain injury or globally following cardiac arrest, all leading to irreversible brain damage. Mitochondrial function is essential for neuronal survival, since neurons critically depend on ATP synthesis generated by mitochondrial oxidative phosphorylation. Mitochondrial activity depends on Ca(2+) and is fueled either by Ca(2+) from the extracellular space when triggered by neuronal activity or by Ca(2+) released from the endoplasmic reticulum (ER) and taken up through specialized contact sites between the ER and mitochondria known as mitochondrial-associated ER membranes. The coordination of these Ca(2+) pools is required to synchronize mitochondrial respiration rates and ATP synthesis to physiological demands. In this review, we discuss the role of the proteins involved in mitochondrial Ca(2+) homeostasis in models of ischemia. The proteins include those important for the Ca(2+)-dependent motility of mitochondria and for Ca(2+) transfer from the ER to mitochondria, the tethering proteins that bring the two organelles together, inositol 1,4,5-triphosphate receptors that enable Ca(2+) release from the ER, voltage-dependent anion channels that allow Ca(2+) entry through the highly permeable outer mitochondrial membrane and the mitochondrial Ca(2+) uniporter together with its regulatory proteins that permit Ca(2+) entry into the mitochondrial matrix. Finally, we address those proteins important for the extrusion of Ca(2+) from the mitochondria such as the mitochondrial Na(+)/Ca(2+) exchanger or, if the mitochondrial Ca(2+) concentration exceeds a certain threshold, the mitochondrial permeability transition pore.


Subject(s)
Brain Ischemia/metabolism , Homeostasis , Mitochondria/metabolism , Animals , Cations, Divalent/metabolism , Endoplasmic Reticulum/metabolism , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Neurons/metabolism , Sodium-Calcium Exchanger/metabolism , Voltage-Dependent Anion Channels/metabolism
13.
Neural Regen Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38934399

ABSTRACT

ABSTRACT: The N-terminal EF-hand calcium-binding proteins 1-3 (NECAB1-3) constitute a family of predominantly neuronal proteins characterized by the presence of at least one EF-hand calcium-binding domain and a functionally less well characterized C-terminal antibiotic biosynthesis monooxygenase domain. All three family members were initially discovered due to their interactions with other proteins. NECAB1 associates with synaptotagmin-1, a critical neuronal protein involved in membrane trafficking and synaptic vesicle exocytosis. NECAB2 interacts with predominantly striatal G-protein-coupled receptors, while NECAB3 partners with amyloid-beta A4 precursor protein-binding family A members 2 and 3, key regulators of ß-amyloid production. This demonstrates the capacity of the family for interactions with various classes of proteins. NECAB proteins exhibit distinct subcellular localizations: NECAB1 is found in the nucleus and cytosol, NECAB2 resides in endosomes and the plasma membrane, and NECAB3 is present in the endoplasmic reticulum and Golgi apparatus. The antibiotic biosynthesis monooxygenase domain, an evolutionarily ancient component, is akin to atypical heme oxygenases in prokaryotes but is not well-characterized in vertebrates. Prokaryotic antibiotic biosynthesis monooxygenase domains typically form dimers, suggesting that calcium-mediated conformational changes in NECAB proteins may induce antibiotic biosynthesis monooxygenase domain dimerization, potentially activating some enzymatic properties. However, the substrate for this enzymatic activity remains uncertain. Alternatively, calcium-mediated conformational changes might influence protein interactions or the subcellular localization of NECAB proteins by controlling the availability of protein-protein interaction domains situated between the EF hands and the antibiotic biosynthesis monooxygenase domain. This review summarizes what is known about genomic organization, tissue expression, intracellular localization, interaction partners, and the physiological and pathophysiological role of the NECAB family.

14.
Redox Biol ; 75: 103211, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38908072

ABSTRACT

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

15.
J Biol Chem ; 287(50): 42042-52, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23076152

ABSTRACT

Calcium ions are involved in a plethora of cellular functions including cell death and mitochondrial energy metabolism. Store-operated Ca(2+) entry over the plasma membrane is activated by depletion of intracellular Ca(2+) stores and is mediated by the sensor STIM1 and the channel ORAI1. We compared cell death susceptibility to oxidative stress in STIM1 knock-out and ORAI1 knockdown mouse embryonic fibroblasts and in knock-out cells with reconstituted wild type and dominant active STIM1. We show that STIM1 and ORAI1 deficiency renders cells more susceptible to oxidative stress, which can be rescued by STIM1 and ORAI1 overexpression. STIM1 knock-out mitochondria are tubular, have a higher Ca(2+) concentration, and are metabolically more active, resulting in constitutive oxidative stress causing increased nuclear translocation of the antioxidant transcription factor NRF2 triggered by increased phosphorylation of the translation initiation factor eIF2α and the protein kinase-like endoplasmic reticulum kinase PERK. This leads to increased transcription of antioxidant genes and a high basal glutathione in STIM1 knock-out cells, which is, however, more rapidly expended upon additional stress, resulting in increased release and nuclear translocation of apoptosis-inducing factor with subsequent cell death. Our data suggest that store-operated Ca(2+) entry and STIM1 are involved in the regulation of mitochondrial shape and bioenergetics and play a role in oxidative stress.


Subject(s)
Embryo, Mammalian/metabolism , Energy Metabolism/physiology , Fibroblasts/metabolism , Membrane Glycoproteins/metabolism , Mitochondria/metabolism , Oxidative Stress/physiology , Active Transport, Cell Nucleus/physiology , Animals , Apoptosis/physiology , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cells, Cultured , Embryo, Mammalian/cytology , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Fibroblasts/cytology , Membrane Glycoproteins/genetics , Mice , Mice, Knockout , Mitochondria/genetics , ORAI1 Protein , Phosphorylation/physiology , Stromal Interaction Molecule 1 , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
16.
J Biol Chem ; 287(4): 2544-57, 2012 Jan 20.
Article in English | MEDLINE | ID: mdl-22128171

ABSTRACT

Bax inhibitor-1 (BI-1) is a multitransmembrane domain-spanning endoplasmic reticulum (ER)-located protein that is evolutionarily conserved and protects against apoptosis and ER stress. Furthermore, BI-1 is proposed to modulate ER Ca(2+) homeostasis by acting as a Ca(2+)-leak channel. Based on experimental determination of the BI-1 topology, we propose that its C terminus forms a Ca(2+) pore responsible for its Ca(2+)-leak properties. We utilized a set of C-terminal peptides to screen for Ca(2+) leak activity in unidirectional (45)Ca(2+)-flux experiments and identified an α-helical 20-amino acid peptide causing Ca(2+) leak from the ER. The Ca(2+) leak was independent of endogenous ER Ca(2+)-release channels or other Ca(2+)-leak mechanisms, namely translocons and presenilins. The Ca(2+)-permeating property of the peptide was confirmed in lipid-bilayer experiments. Using mutant peptides, we identified critical residues responsible for the Ca(2+)-leak properties of this BI-1 peptide, including a series of critical negatively charged aspartate residues. Using peptides corresponding to the equivalent BI-1 domain from various organisms, we found that the Ca(2+)-leak properties were conserved among animal, but not plant and yeast orthologs. By mutating one of the critical aspartate residues in the proposed Ca(2+)-channel pore in full-length BI-1, we found that Asp-213 was essential for BI-1-dependent ER Ca(2+) leak. Thus, we elucidated residues critically important for BI-1-mediated Ca(2+) leak and its potential channel pore. Remarkably, one of these residues was not conserved among plant and yeast BI-1 orthologs, indicating that the ER Ca(2+)-leak properties of BI-1 are an added function during evolution.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Animals , Calcium/chemistry , Calcium Channels/chemistry , Calcium Channels/genetics , Endoplasmic Reticulum/chemistry , Endoplasmic Reticulum/genetics , Evolution, Molecular , HeLa Cells , Humans , Intracellular Membranes/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Peptide Mapping , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Plants/chemistry , Plants/genetics , Plants/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Yeasts/chemistry , Yeasts/genetics , Yeasts/metabolism
17.
J Cell Sci ; 124(Pt 2): 252-60, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21172805

ABSTRACT

TOX3 is a nuclear protein containing a high mobility group (HMG)-box domain, which regulates Ca(2+)-dependent transcription in neurons through interaction with the cAMP-response-element-binding protein (CREB). TOX3 appears to be associated with breast cancer susceptibility and was previously shown to be expressed downstream of a cytoprotective cascade together with CITED1, a transcriptional regulator that does not bind directly to DNA. In the present study we show that TOX3 is predominantly expressed in the brain, forms homodimers and interacts with CITED1. TOX3 overexpression protects neuronal cells from cell death caused by endoplasmic reticulum stress or BAX overexpression through the induction of anti-apoptotic transcripts and repression of pro-apoptotic transcripts, which correlates with enhanced transcription involving isolated estrogen-responsive elements and estrogen-responsive promoters. However, both functions cannot be inhibited with the anti-estrogen fulvestrant and are only attenuated by mutation of estrogen-responsive elements. TOX3 also interacts with native CREB and induces the CREB-responsive BCL-2 promoter, which can be inhibited by coexpression of CITED1. Coexpression of CREB, by contrast, abolishes TOX3-mediated transcription from the estrogen-responsive complement C3 promoter. Our results suggest that TOX3 can enhance transcriptional activation from different cytoprotective promoters and that this is dependent on the predominance of either phosphorylated CREB or CITED1 within the transcriptionally active complex.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Neurons/cytology , Neurons/metabolism , Nuclear Proteins/metabolism , Receptors, Progesterone/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Animals , Apoptosis Regulatory Proteins , COS Cells , Cell Survival , Chlorocebus aethiops , Cyclic AMP Response Element-Binding Protein/genetics , Gene Expression Regulation , HEK293 Cells , High Mobility Group Proteins , Humans , Nuclear Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Receptors, Progesterone/genetics , Trans-Activators , Transcription Factors/genetics , Transcription, Genetic
18.
J Neurovirol ; 19(6): 523-30, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24101298

ABSTRACT

The development of human immunodeficiency virus type 1 (HIV)-associated neurocognitive disorder (HAND) involves the adaptation of viral sequences coding for the V3 loop of the env protein. The plasma and cerebrospinal fluid (CSF) may contain viral populations from various cellular sources and with differing pathogenicity. Combination antiretroviral therapy (cART) may alter the relative abundance of these viral populations, leading to a genetic shift. We characterized plasma and CNS viral populations prior to and during cART and relate the findings to viral elimination kinetics and the clinical phenotype. Longitudinal plasma and CSF samples of five chronically infected HIV patients, four of whom had HAND, and one seroconverter were analyzed for V3 sequences by RT-PCR and sequence analysis. In the chronically infected patients, pre-cART plasma and CSF viral sequences were different irrespective of viral elimination kinetics and clinical phenotype. cART induced replacement of plasma viral populations in all subjects. CSF viral populations underwent a clear genetic shift in some patients but remained stable in others. This was not dependent on the presence of HAND. The genetic shift of CSF V3 sequences was absent in the two subjects whose CSF viral load initially increased during cART. In one patient, pre- and post-treatment CSF sequences were closely related to the post-treatment plasma sequences, suggesting a common cellular source. We found heterogeneous patterns of genetic compartmentalization and genetic shift over time. Although these did not closely match viral elimination kinetics and clinical phenotype, the results imply different patterns of the dynamics and relative contribution of compartment-specific virus populations in chronic HIV infection.


Subject(s)
Anti-HIV Agents/therapeutic use , Cognition Disorders/virology , Genetic Drift , HIV Infections/virology , HIV-1/genetics , RNA, Viral/genetics , env Gene Products, Human Immunodeficiency Virus , Adult , Cognition Disorders/etiology , Drug Therapy, Combination , Female , HIV Infections/complications , HIV Infections/drug therapy , HIV-1/classification , HIV-1/pathogenicity , Humans , Male , Middle Aged , Neuropsychological Tests , RNA, Viral/blood , RNA, Viral/cerebrospinal fluid , Severity of Illness Index , Viral Load
19.
Free Radic Biol Med ; 208: 643-656, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37722569

ABSTRACT

Synaptic signaling depends on ATP generated by mitochondria. Dysfunctional mitochondria shift the redox balance towards a more oxidative environment. Due to extensive connectivity, the striatum is especially vulnerable to mitochondrial dysfunction. We found that neuronal calcium-binding protein 2 (NECAB2) plays a role in striatal function and mitochondrial homeostasis. NECAB2 is a predominantly endosomal striatal protein which partially colocalizes with mitochondria. This colocalization is enhanced by mild oxidative stress. Global knockout of Necab2 in the mouse results in increased superoxide levels, increased DNA oxidation and reduced levels of the antioxidant glutathione which correlates with an altered mitochondrial shape and function. Striatal mitochondria from Necab2 knockout mice are more abundant and smaller and characterized by a reduced spare capacity suggestive of intrinsic uncoupling respectively mitochondrial dysfunction. In line with this, we also found an altered stress-induced interaction of endosomes with mitochondria in Necab2 knockout striatal cultures. The predominance of dysfunctional mitochondria and the pro-oxidative redox milieu correlates with a loss of striatal synapses and behavioral changes characteristic of striatal dysfunction like reduced motivation and altered sensory gating. Together this suggests an involvement of NECAB2 in an endosomal pathway of mitochondrial stress response important for striatal function.


Subject(s)
Antioxidants , Corpus Striatum , Oxidative Stress , Animals , Mice , Antioxidants/metabolism , Calcium-Binding Proteins/metabolism , Eye Proteins/metabolism , Mice, Knockout , Mitochondria/genetics , Mitochondria/metabolism , Neurons/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Corpus Striatum/physiology
20.
J Neuroinflammation ; 9: 163, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22769044

ABSTRACT

BACKGROUND: Neuronal degeneration in multiple sclerosis has been linked to oxidative stress. Dimethyl fumarate is a promising novel oral therapeutic option shown to reduce disease activity and progression in patients with relapsing-remitting multiple sclerosis. These effects are presumed to originate from a combination of immunomodulatory and neuroprotective mechanisms. We aimed to clarify whether neuroprotective concentrations of dimethyl fumarate have immunomodulatory effects. FINDINGS: We determined time- and concentration-dependent effects of dimethyl fumarate and its metabolite monomethyl fumarate on viability in a model of endogenous neuronal oxidative stress and clarified the mechanism of action by quantitating cellular glutathione content and recycling, nuclear translocation of transcription factors, and the expression of antioxidant genes. We compared this with changes in the cytokine profiles released by stimulated splenocytes measured by ELISPOT technology and analyzed the interactions between neuronal and immune cells and neuronal function and viability in cell death assays and multi-electrode arrays. Our observations show that dimethyl fumarate causes short-lived oxidative stress, which leads to increased levels and nuclear localization of the transcription factor nuclear factor erythroid 2-related factor 2 and a subsequent increase in glutathione synthesis and recycling in neuronal cells. Concentrations that were cytoprotective in neuronal cells had no negative effects on viability of splenocytes but suppressed the production of proinflammatory cytokines in cultures from C57BL/6 and SJL mice and had no effects on neuronal activity in multi-electrode arrays. CONCLUSIONS: These results suggest that immunomodulatory concentrations of dimethyl fumarate can reduce oxidative stress without altering neuronal network activity.


Subject(s)
Fumarates/pharmacology , Immunomodulation/immunology , Neuroprotective Agents/pharmacology , Animals , Cell Death/drug effects , Cell Death/immunology , Cells, Cultured , Dimethyl Fumarate , Female , Immunomodulation/drug effects , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Oxidative Stress/immunology , Spleen/cytology , Spleen/drug effects , Spleen/immunology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL