Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Thorax ; 77(12): 1229-1236, 2022 12.
Article in English | MEDLINE | ID: mdl-35165144

ABSTRACT

BACKGROUND: The COVID-19 pandemic continues to be a worldwide threat and effective antiviral drugs and vaccines are being developed in a joint global effort. However, some elderly and immune-compromised populations are unable to raise an effective immune response against traditional vaccines. AIMS: We hypothesised that passive immunity engineered by the in vivo expression of anti-SARS-CoV-2 monoclonal antibodies (mAbs), an approach termed vectored-immunoprophylaxis (VIP), could offer sustained protection against COVID-19 in all populations irrespective of their immune status or age. METHODS: We developed three key reagents to evaluate VIP for SARS-CoV-2: (i) we engineered standard laboratory mice to express human ACE2 via rAAV9 in vivo gene transfer, to allow in vivo assessment of SARS-CoV-2 infection, (ii) to simplify in vivo challenge studies, we generated SARS-CoV-2 Spike protein pseudotyped lentiviral vectors as a simple mimic of authentic SARS-CoV-2 that could be used under standard laboratory containment conditions and (iii) we developed in vivo gene transfer vectors to express anti-SARS-CoV-2 mAbs. CONCLUSIONS: A single intranasal dose of rAAV9 or rSIV.F/HN vectors expressing anti-SARS-CoV-2 mAbs significantly reduced SARS-CoV-2 mimic infection in the lower respiratory tract of hACE2-expressing mice. If translated, the VIP approach could potentially offer a highly effective, long-term protection against COVID-19 for highly vulnerable populations; especially immune-deficient/senescent individuals, who fail to respond to conventional SARS-CoV-2 vaccines. The in vivo expression of multiple anti-SARS-CoV-2 mAbs could enhance protection and prevent rapid mutational escape.


Subject(s)
COVID-19 , Humans , Mice , Animals , Aged , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2/genetics , Pandemics/prevention & control , Antibodies, Viral , Lung , Antibodies, Neutralizing
2.
Angew Chem Int Ed Engl ; 55(19): 5865-8, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27059784

ABSTRACT

Allosteric regulation promises to open up new therapeutic avenues by increasing drug specificity at G-protein-coupled receptors (GPCRs). However, drug discovery efforts are at present hampered by an inability to precisely control the allosteric site. Herein, we describe the design, synthesis, and testing of PhotoETP, a light-activated positive allosteric modulator of the glucagon-like peptide-1 receptor (GLP-1R), a class B GPCR involved in the maintenance of glucose homeostasis in humans. PhotoETP potentiates Ca(2+) , cAMP, and insulin responses to glucagon-like peptide-1 and its metabolites following illumination of cells with blue light. PhotoETP thus provides a blueprint for the production of small-molecule class B GPCR allosteric photoswitches, and may represent a useful tool for understanding positive cooperativity at the GLP-1R.


Subject(s)
Aniline Compounds/pharmacology , Glucagon-Like Peptide-1 Receptor/metabolism , Allosteric Regulation/radiation effects , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Animals , Azo Compounds/chemistry , CHO Cells , Calcium/metabolism , Cell Survival/drug effects , Cell Survival/radiation effects , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Glucagon-Like Peptide-1 Receptor/genetics , Humans , Insulin/metabolism , Isomerism , Light , Pyrimidines/chemistry , Pyrimidines/pharmacology , Ultraviolet Rays
3.
Angew Chem Int Ed Engl ; 54(51): 15565-9, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26585495

ABSTRACT

Incretin mimetics are set to become a mainstay of type 2 diabetes treatment. By acting on the pancreas and brain, they potentiate insulin secretion and induce weight loss to preserve normoglycemia. Despite this, incretin therapy has been associated with off-target effects, including nausea and gastrointestinal disturbance. A novel photoswitchable incretin mimetic based upon the specific glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide was designed, synthesized, and tested. This peptidic compound, termed LirAzo, possesses an azobenzene photoresponsive element, affording isomer-biased GLP-1R signaling as a result of differential activation of second messenger pathways in response to light. While the trans isomer primarily engages calcium influx, the cis isomer favors cAMP generation. LirAzo thus allows optical control of insulin secretion and cell survival.


Subject(s)
Incretins/chemistry , Insulin/metabolism , Liraglutide/pharmacology , Amino Acid Sequence , Animals , CHO Cells , Cell Line, Transformed , Cricetinae , Cricetulus , Diabetes Mellitus, Type 2/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Insulin Secretion , Liraglutide/chemistry , Liraglutide/therapeutic use , Mice , Molecular Mimicry , Molecular Sequence Data , Signal Transduction
4.
Stem Cell Res Ther ; 11(1): 448, 2020 10 23.
Article in English | MEDLINE | ID: mdl-33097094

ABSTRACT

Gene therapy is being investigated for a range of serious lung diseases, such as cystic fibrosis and emphysema. Recombinant adeno-associated virus (rAAV) is a well-established, safe, viral vector for gene delivery with multiple naturally occurring and artificial serotypes available displaying alternate cell, tissue, and species-specific tropisms. Efficient AAV serotypes for the transduction of the conducting airways have been identified for several species; however, efficient serotypes for human lung parenchyma have not yet been identified. Here, we screened the ability of multiple AAV serotypes to transduce lung bud organoids (LBOs)-a model of human lung parenchyma generated from human embryonic stem cells. Microinjection of LBOs allowed us to model transduction from the luminal surface, similar to dosing via vector inhalation. We identified the naturally occurring rAAV2 and rAAV6 serotypes, along with synthetic rAAV6 variants, as having tropism for the human lung parenchyma. Positive staining of LBOs for surfactant proteins B and C confirmed distal lung identity and suggested the suitability of these vectors for the transduction of alveolar type II cells. Our findings establish LBOs as a new model for pulmonary gene therapy and stress the relevance of LBOs as a viral infection model of the lung parenchyma as relevant in SARS-CoV-2 research.


Subject(s)
Dependovirus/genetics , Genetic Therapy/methods , Human Embryonic Stem Cells/cytology , Lung Diseases/therapy , Organoids/cytology , Cell Line , Dependovirus/immunology , Gene Transfer Techniques , Genetic Vectors/genetics , Humans , Lung/metabolism , Models, Biological , Parenchymal Tissue/cytology
5.
Chem Sci ; 8(6): 4644-4653, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28626572

ABSTRACT

The optical control over biological function with small photoswitchable molecules has gathered significant attention in the last decade. Herein, we describe the design and synthesis of a small library of photoswitchable peptidomimetics based upon human atrial natriuretic peptide (ANP), in which the photochromic amino acid [3-(3-aminomethyl)phenylazo]phenylacetic acid (AMPP) is incorporated into the peptide backbone. The endogeneous hormone ANP signals via the natriuretic peptide receptor A (NPR-A) through raising intracellular cGMP concentrations, and is involved in blood pressure regulation and sodium homeostasis, as well as lipid metabolism and pancreatic function. The cis- and trans-isomers of one of our peptidomimetics, termed TOP271, exhibit a four-fold difference in NPR-A mediated cGMP synthesis in vitro. Despite this seemingly small difference, TOP271 enables large, optically-induced conformational changes ex vivo and transforms the NPR-A into an endogenous photoswitch. Thus, application of TOP271 allows the reversible generation of cGMP using light and remote control can be afforded over vasoactivity in explanted murine aortic rings, as well as pancreatic beta cell function in islets of Langerhans. This study demonstrates the broad applicability of TOP271 to enzyme-dependent signalling processes, extends the toolbox of photoswitchable molecules to all classes of transmembrane receptors and utilizes photopharmacology to deduce receptor activation on a molecular level.

SELECTION OF CITATIONS
SEARCH DETAIL