Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Bioanal Chem ; 414(22): 6441-6453, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35788872

ABSTRACT

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths in China. Glypican-3 (GPC3) is a specific antigen related to HCC, which is widely used in clinical detection as a reliable marker of HCC. In this paper, a highly sensitive homogeneous apatasensor was designed for GPC3 detection based on fluorescence resonance energy transfer (FRET) where the GPC3 aptamer labelled gold carbon dots (AuCDs-GPC3Apt) are used as a donor and magnetic graphene oxide (Fe3O4/GO) nanosheets are used as an acceptor. A one-step hydrothermal method was used to synthesize AuCDs to provide sufficient fluorescence. The FRET phenomenon exists between AuCDs-GPC3Apt and Fe3O4/GO, which weakens the fluorescence intensity of the whole system. When the target GPC3 is added to the FRET system, the fluorescent AuCDs-GPC3Apt binds to the GPC3 and forms a folded structure, which leads to AuCDs-GPC3Apt separation from Fe3O4/GO nanosheets. The Fe3O4/GO is then magnetically separated so that the fluorescence of free labelled AuCDs-GPC3Apt is restored. Under the optimum conditions, the fluorescence recovery rate is linearly correlated with the concentration of GPC3 (5-100 ng·mL-1) and the detection limit is 3.01 ng·mL-1 (S/N = 3). This strategy shows recoveries from 98.76 to 101.29% in real human serum samples and provides an immediate and effective detection method for the quantification of GPC3 with great potential applications for early diagnosis of HCC. A sensitive homogeneous FRET-based apatasensor was designed for GPC3 detection where the AuCDs-GPC3Apt is a donor and Fe3O4/GO nanosheets are an acceptor. The GPC3 fluorescent aptasensor combines wider output range with low cost, high specificity, and good anti-interference.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoma, Hepatocellular , Graphite , Liver Neoplasms , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Carbon/chemistry , Carcinoma, Hepatocellular/diagnosis , Early Detection of Cancer , Fluorescence Resonance Energy Transfer/methods , Glypicans , Gold/chemistry , Graphite/chemistry , Humans , Limit of Detection , Liver Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL