Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892083

ABSTRACT

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Subject(s)
Chondroitin Sulfates , Drug Carriers , Nanocapsules , Nanocapsules/chemistry , Humans , Chondroitin Sulfates/chemistry , Drug Carriers/chemistry , Dietary Supplements , Fibroblasts/drug effects , Cell Proliferation/drug effects , Keratinocytes/drug effects , Emulsions/chemistry , Particle Size , Vitamin E/chemistry , Cell Survival/drug effects , Cell Line , HaCaT Cells
2.
Int J Mol Sci ; 24(9)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37175437

ABSTRACT

The airway wall remodeling observed in asthma is associated with subepithelial fibrosis and enhanced activation of human bronchial fibroblasts (HBFs) in the fibroblast to myofibroblast transition (FMT), induced mainly by transforming growth factor-ß (TGF-ß). The relationships between asthma severity, obesity, and hyperlipidemia suggest the involvement of peroxisome proliferator-activated receptors (PPARs) in the remodeling of asthmatic bronchi. In this study, we investigated the effect of PPARδ ligands (GW501516 as an agonist, and GSK0660 as an antagonist) on the FMT potential of HBFs derived from asthmatic patients cultured in vitro. This report shows, for the first time, the inhibitory effect of a PPARδ agonist on the number of myofibroblasts and the expression of myofibroblast-related markers-α-smooth muscle actin, collagen 1, tenascin C, and connexin 43-in asthma-related TGF-ß-treated HBF populations. We suggest that actin cytoskeleton reorganization and Smad2 transcriptional activity altered by GW501516 lead to the attenuation of the FMT in HBF populations derived from asthmatics. In conclusion, our data demonstrate that a PPARδ agonist stimulates antifibrotic effects in an in vitro model of bronchial subepithelial fibrosis. This suggests its potential role in the development of a possible novel therapeutic approach for the treatment of subepithelial fibrosis during asthma.


Subject(s)
Asthma , PPAR delta , Humans , Transforming Growth Factor beta/metabolism , PPAR delta/metabolism , Transforming Growth Factor beta1/metabolism , Fibroblasts/metabolism , Asthma/metabolism , Bronchi/metabolism , Myofibroblasts/metabolism , Fibrosis , Cells, Cultured
3.
Int J Mol Sci ; 22(23)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34884593

ABSTRACT

Subepithelial fibrosis is a component of the remodeling observed in the bronchial wall of patients diagnosed with asthma. In this process, human bronchial fibroblasts (HBFs) drive the fibroblast-to-myofibroblast transition (FMT) in response to transforming growth factor-ß1 (TGF-ß1), which activates the canonical Smad-dependent signaling. However, the pleiotropic properties of TGF-ß1 also promote the activation of non-canonical signaling pathways which can affect the FMT. In this study we investigated the effect of p38 mitogen-activated protein kinase (MAPK) inhibition by SB203580 on the FMT potential of HBFs derived from asthmatic patients using immunocytofluorescence, real-time PCR and Western blotting methods. Our results demonstrate for the first time the strong effect of p38 MAPK inhibition on the TGF-ß1-induced FMT potential throughout the strong attenuation of myofibroblast-related markers: α-smooth muscle actin (α-SMA), collagen I, fibronectin and connexin 43 in HBFs. We suggest the pleiotropic mechanism of SB203580 on FMT impairment in HBF populations by the diminishing of TGF-ß/Smad signaling activation and disturbances in the actin cytoskeleton architecture along with the maturation of focal adhesion sites. These observations justify future research on the role of p38 kinase in FMT efficiency and bronchial wall remodeling in asthma.


Subject(s)
Asthma/drug therapy , Bronchi/drug effects , Cell Differentiation , Enzyme Inhibitors/pharmacology , Fibroblasts/drug effects , Imidazoles/pharmacology , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Adult , Asthma/enzymology , Asthma/pathology , Bronchi/enzymology , Cells, Cultured , Female , Fibroblasts/enzymology , Humans , Male , Middle Aged , Signal Transduction
4.
Cell Mol Life Sci ; 76(1): 209, 2019 01.
Article in English | MEDLINE | ID: mdl-30155648

ABSTRACT

In the original publication, funding information was inadvertently omitted.

5.
Cell Mol Life Sci ; 75(21): 3943-3961, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30101406

ABSTRACT

Bronchial asthma is a chronic inflammatory disease in which bronchial wall remodelling plays a significant role. This phenomenon is related to enhanced proliferation of airway smooth muscle cells, elevated extracellular matrix protein secretion and an increased number of myofibroblasts. Phenotypic fibroblast-to-myofibroblast transition represents one of the primary mechanisms by which myofibroblasts arise in fibrotic lung tissue. Fibroblast-to-myofibroblast transition requires a combination of several types of factors, the most important of which are divided into humoural and mechanical factors, as well as certain extracellular matrix proteins. Despite intensive research on the nature of this process, its underlying mechanisms during bronchial airway wall remodelling in asthma are not yet fully clarified. This review focuses on what is known about the nature of fibroblast-to-myofibroblast transition in asthma. We aim to consider possible mechanisms and conditions that may play an important role in fibroblast-to-myofibroblast transition but have not yet been discussed in this context. Recent studies have shown that some inherent and previously undescribed features of fibroblasts can also play a significant role in fibroblast-to-myofibroblast transition. Differences observed between asthmatic and non-asthmatic bronchial fibroblasts (e.g., response to transforming growth factor ß, cell shape, elasticity, and protein expression profile) may have a crucial influence on this phenomenon. An accurate understanding and recognition of all factors affecting fibroblast-to-myofibroblast transition might provide an opportunity to discover efficient methods of counteracting this phenomenon.


Subject(s)
Asthma/pathology , Fibroblasts/pathology , Fibrosis/pathology , Myofibroblasts/pathology , Airway Remodeling , Bronchi/pathology , Cell Differentiation , Cell Shape , Humans
6.
Phytother Res ; 33(9): 2141-2151, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31294509

ABSTRACT

Triterpene saponins (saponosides) are found in higher plants and display a wide range of biological and pharmacological activities. The antitumor effects of saponins have been proved by their cytotoxic, cytostatic, proapoptotic, and anti-invasive effects in many cellular models. Saponins hold great potential for being developed into chemopreventive and chemotherapeutic drugs. A promising way of reducing the adverse effects of chemotherapy without attenuating its efficiency is provided by the combined application of chemotherapeutic agents and saponosides in subtoxic concentrations. Until recently, saponosides were primarily used as adjuvants that enhance the effect of vaccines. In cancer therapy, saponins are applied in combination with immunotoxins because they increase the selectivity of given immunotoxins against cancer cells and therefore inure normal cells to the cytotoxic effects of immunotoxins. Significantly, certain saponins have been identified that drastically enhance the efficacy of many chemotherapeutic agents, including cisplatin, paclitaxel, doxorubicin, docetaxel, mitoxantrone, and cyclophosphamide. Moreover, saponins used in combination therapy enhance the sensitivity of chemoresistant tumor cells to clinically used chemotherapeutic agents. This review sheds light on the molecular mechanisms underlying cancer co-treatment with saponins and chemotherapy, with a particular focus on modulation of the cell signaling pathways associated with the promotion and progression of cancer cell proliferation, apoptosis, and metastasis.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Saponins/therapeutic use , Antineoplastic Agents/pharmacology , Humans , In Vitro Techniques , Neoplasms/pathology , Saponins/pharmacology
7.
Cytokine ; 102: 187-190, 2018 02.
Article in English | MEDLINE | ID: mdl-28927757

ABSTRACT

Fibroblast to myofibroblast transition (FMT) contributes to bronchial wall remodelling in persistent asthma. Among other numerous factors involved, transforming growth factor type ß (TGF-ß) plays a pivotal role. Recently it has been demonstrated that connective tissue growth factor (CTGF), a matricellular protein, combines with TGF-ß in the pathomechanism of many fibrotic disorders. However, it is not clear whether this interaction takes place in asthma as well. Primary cultures of human bronchial fibroblasts from asthmatic and non-asthmatic subjects were used to investigate the impact of CTGF and TGF-ß1 on the fibroblast to myofibroblast transition. The combined activity of TGF-ß1 and CTGF resulted in an average of 90% of FMT accomplished in cell lines derived from asthmatics. In this group FMT was highly dependent on the presence of CTGF produced by the cells, as shown by gene silencing experiments with the specific siRNA. Results support the important role of CTGF biosynthesis in the asthmatic bronchi amplifying FMT. This is evidenced by inhibition of TGF-ß1-induced FMT following CTGF silencing in asthmatic bronchial fibroblasts. CTGF is produced by fibroblasts and contributes to the FMT phenomenon in positive loop-back, inducing and boosting TGF-ß1 triggered FMT. Thus, CTGF is a promising target for pharmacological intervention in secondary prevention of bronchial remodelling in asthma.


Subject(s)
Asthma/pathology , Asthma/physiopathology , Bronchi/physiology , Bronchi/physiopathology , Connective Tissue Growth Factor/physiology , Airway Remodeling/physiology , Asthma/therapy , Cell Transdifferentiation/physiology , Cells, Cultured , Connective Tissue Growth Factor/antagonists & inhibitors , Connective Tissue Growth Factor/genetics , Fibroblasts/pathology , Humans , Myofibroblasts/pathology , RNA, Small Interfering/genetics , Transforming Growth Factor beta1/physiology
8.
Int J Mol Sci ; 19(9)2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30158495

ABSTRACT

The activation of human bronchial fibroblasts by transforming growth factor-ß1 (TGF-ß1) leads to the formation of highly contractile myofibroblasts in the process of the fibroblast⁻myofibroblast transition (FMT). This process is crucial for subepithelial fibrosis and bronchial wall remodeling in asthma. However, this process evades current therapeutic asthma treatment strategies. Since our previous studies showed the attenuation of the TGF-ß1-induced FMT in response to lipid-lowering agents (e.g., statins), we were interested to see whether a corresponding effect could be obtained upon administration of hypolipidemic agents. In this study, we investigated the effect of fenofibrate on FMT efficiency in populations of bronchial fibroblasts derived from asthmatic patients. Fenofibrate exerted a dose-dependent inhibitory effect on the FMT, even though it did not efficiently affect the expression of α-smooth muscle actin (α-SMA; marker of myofibroblasts); however, it considerably reduced its incorporation into stress fibers through connexin 43 regulation. This effect was accompanied by disturbances in the actin cytoskeleton architecture, impairments in the maturation of focal adhesions, and the fenofibrate-induced deactivation of TGF-ß1/Smad2/3 signaling. These data suggest that fenofibrate interferes with myofibroblastic differentiation during asthma-related subepithelial fibrosis. The data indicate the potential application of fenofibrate in the therapy and prevention of bronchial remodeling during the asthmatic process.


Subject(s)
Asthma/metabolism , Connexin 43/metabolism , Fenofibrate/pharmacology , Fibroblasts/metabolism , Myofibroblasts/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Fibroblasts/cytology , Humans , Myofibroblasts/cytology , Signal Transduction/drug effects
9.
Am J Respir Cell Mol Biol ; 57(1): 100-110, 2017 07.
Article in English | MEDLINE | ID: mdl-28245135

ABSTRACT

Pathologic accumulation of myofibroblasts in asthmatic bronchi is regulated by extrinsic stimuli and by the intrinsic susceptibility of bronchial fibroblasts to transforming growth factor-ß (TGF-ß). The specific function of gap junctions and connexins in this process has remained unknown. Here, we investigated the role of connexin43 (Cx43) in TGF-ß-induced myofibroblastic differentiation of fibroblasts derived from bronchoscopic biopsy specimens of patients with asthma and donors without asthma. Asthmatic fibroblasts expressed considerably higher levels of Cx43 and were more susceptible to TGF-ß1-induced myofibroblastic differentiation than were their nonasthmatic counterparts. TGF-ß1 efficiently up-regulated Cx43 levels and activated the canonical Smad pathway in asthmatic cells. Ectopic Cx43 expression in nonasthmatic (Cx43low) fibroblasts increased their predilection to TGF-ß1-induced Smad2 activation and fibroblast-myofibroblast transition. Transient Cx43 silencing in asthmatic (Cx43high) fibroblasts by Cx43 small interfering RNA attenuated the TGF-ß1-triggered Smad2 activation and myofibroblast formation. Direct interactions of Smad2 and Cx43 with ß-tubulin were demonstrated by co-immunoprecipitation assay, whereas the sensitivity of these interactions to TGF-ß1 signaling was confirmed by Förster Resonance Energy Transfer analyses. Furthermore, inhibition of the TGF-ß1/Smad pathway attenuated TGF-ß1-triggered Cx43 up-regulation and myofibroblast differentiation of asthmatic fibroblasts. Chemical inhibition of gap junctional intercellular communication with 18 α-glycyrrhetinic acid did not affect the initiation of fibroblast-myofibroblast transition in asthmatic fibroblasts but interfered with the maintenance of their myofibroblastic phenotype. Collectively, our data identified Cx43 as a new player in the feedback mechanism regulating TGF-ß1/Smad-dependent differentiation of bronchial fibroblasts. Thus, our observations point to Cx43 as a novel profibrotic factor in asthma progression.


Subject(s)
Asthma/metabolism , Asthma/pathology , Bronchi/pathology , Cell Differentiation , Connexin 43/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Adult , Cell Differentiation/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Gap Junctions/drug effects , Gap Junctions/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , Male , Middle Aged , Myofibroblasts/drug effects , Phenotype , Signal Transduction/drug effects , Smad2 Protein/metabolism , Transforming Growth Factor beta1/pharmacology , Up-Regulation/drug effects
10.
Chem Biodivers ; 14(3)2017 Mar.
Article in English | MEDLINE | ID: mdl-27981754

ABSTRACT

This study has been aimed at providing a qualitative and quantitative evaluation of selected phytochemicals such as phenolic acids, flavonoids, oleuropein, fatty acids profile, and volatile oil compounds, present in wild olive leaves harvested in Portugal, as well as at determining their antioxidant and cytotoxic potential against human melanoma HTB-140 and WM793, prostate cancer DU-145 and PC-3, hepatocellular carcinoma Hep G2 cell lines, as well as normal human skin fibroblasts BJ and prostate epithelial cells PNT2. Gallic, protocatechuic, p-hydroxybenzoic, vanillic acids, apigenin 7-O-glucoside, luteolin 7-O-glucoside, and rutin were identified in olive leaves. The amount of oleuropein was equal to 22.64 g/kg dry weight. (E)-Anethole (32.35%), fenchone (11.89%), and (Z)-3-nonen-1-ol (8%) were found to be the main constituents of the oil volatile fraction, whereas palmitic, oleic, and alpha-linolenic acid were determined to be dominating fatty acids. Olive leaves methanol extract was observed to exerted a significant, selective cytotoxic effect on DU-145 and PC-3 cell lines. Except the essential oil composition, evaluated wild olive leaves, with regard to their quantitative and qualitative composition, do not substantially differ from the leaves of other cultivars grown for industrial purposes and they reveal considerable antioxidant and cytotoxic properties. Thus, the wild species may prove to be suitable for use in traditional medicine as cancer chemoprevention.


Subject(s)
Olea/chemistry , Phytochemicals/chemistry , Plant Extracts/chemistry , Antioxidants/chemistry , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Flavonoids/chemistry , Flavonoids/isolation & purification , Humans , Hydroxybenzoates/chemistry , Hydroxybenzoates/isolation & purification , Iridoid Glucosides , Iridoids/chemistry , Iridoids/isolation & purification , Olea/metabolism , Phytochemicals/isolation & purification , Phytochemicals/toxicity , Plant Extracts/toxicity , Plant Leaves/chemistry , Plant Leaves/metabolism , Portugal
11.
Planta Med ; 82(18): 1546-1552, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27737477

ABSTRACT

Triterpene saponins are secondary metabolites typical for higher plants. They possess a wide range of pharmaceutical and biological activities. These include anti-inflammatory, vasoprotective, expectorant, and antitumor properties. In particular, the ability of saponins to enhance the cytotoxicity of chemotherapeutic drugs has opened new perspectives for their application in combined cancer chemotherapy. In this study, the biological activity of the saponin fraction isolated from Lysimachia ciliata (denoted as CIL-1/2) was evaluated to assess its chemosensitizing activity in prostate cancer cell lines (DU-145, PC-3). No cytotoxic or cytostatic effect of the CIL-1/2 fraction administered at the concentration of 0.5 µg/mL was observed. In contrast, cocktails of CIL-1/2 and mitoxantrone (a drug commonly used in prostate cancer therapy) exerted synergistic cytostatic and proapoptotic effects. Furthermore, the synergy of proapoptotic activities of the analyzed cocktails is accompanied by their synergistic effects on prostate cancer cell movement and invasiveness. The significantly weaker impact of this cocktail on normal prostate cells additionally adds to the significance of our data and confirms that the CIL-1/2 fraction might be considered a potent adjuvant for prostate cancer chemotherapy.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Mitoxantrone/pharmacology , Primulaceae/chemistry , Prostatic Neoplasms/pathology , Saponins/pharmacology , Triterpenes/pharmacology , Cell Line, Tumor , Humans , Male
12.
Carcinogenesis ; 35(9): 1920-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24503443

ABSTRACT

Suppressive function of connexin(Cx)43 in carcinogenesis was recently contested by reports that showed a multifaceted function of Cx43 in cancer progression. These studies did not attempt to model the dynamics of intratumoral heterogeneity involved in the metastatic cascade. An unorthodox look at the phenotypic heterogeneity of prostate cancer cells in vitro enabled us to identify links between Cx43 functions and Snail-1-regulated functional speciation of invasive cells. Incomplete Snail-1-dependent phenotypic shifts accounted for the formation of phenotypically stable subclones of AT-2 cells. These subclones showed diverse predilection for invasive behavior. High Snail-1 and Cx43 levels accompanied high motility and nanomechanical elasticity of the fibroblastoid AT-2_Fi2 subclone, which determined its considerable invasiveness. Transforming growth factor-ß and ectopic Snail-1 overexpression induced invasiveness and Cx43 expression in epithelioid AT-2 subclones and DU-145 cells. Functional links between Snail-1 function and Cx43 expression were confirmed by Cx43 downregulation and phenotypic shifts in AT-2_Fi2, DU-145 and MAT-LyLu cells upon Snail-1 silencing. Corresponding morphological changes and Snail-1 downregulation were seen upon Cx43 silencing in AT-2_Fi2 cells. This indicates that feedback loops between both proteins regulate cell invasive behavior. We demonstrate that Cx43 may differentially predispose prostate cancer cells for invasion in a coupling-dependent and coupling-independent manner. When extrapolated to in vivo conditions, these data show the complexity of Cx43 functions during the metastatic cascade of prostate cancer. They may explain how Cx43 confers a selective advantage during cooperative invasion of clonally evolving, invasive prostate cancer cell subpopulations.


Subject(s)
Connexin 43/physiology , Transcription Factors/physiology , Transendothelial and Transepithelial Migration , Cell Line, Tumor , Cell Shape , Epithelial-Mesenchymal Transition , Feedback, Physiological , Gap Junctions/metabolism , Humans , Male , Phenotype , Prostatic Neoplasms , Signal Transduction , Snail Family Transcription Factors
13.
Biomedicines ; 11(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37626635

ABSTRACT

Accumulating evidence suggests that an important role is played by electric signals in modifying cell behaviour during developmental, regenerative and pathological processes. However, their role in asthma has not yet been addressed. Bronchial fibroblasts have recently been identified having important roles in asthma development. Therefore, we adapted an experimental approach based on the lineages of human bronchial fibroblasts (HBF) derived from non-asthmatic (NA) donors and asthmatic (AS) patients to elucidate whether their reactivity to direct current electric fields (dcEF) could participate in the asthmatic process. The efficient responsiveness of NA HBF to an electric field in the range of 2-4 V/cm was illustrated based on the perpendicular orientation of long axes of the cells to the field lines and their directional movement towards the anode. These responses were related to the activity of TGF-ß signalling, as the electrotaxis and re-orientation of NA HBF polarity was impaired by the inhibitors of canonical and non-canonical TGF-ß-dependent pathways. A similar tendency towards perpendicular cell-dcEF orientation was observed for AS HBF. However, their motility remained insensitive to the electric field applied at 2-4 V/cm. Collectively, these observations demonstrate the sensitivity of NA HBF to dcEF, as well as the inter-relations between this parameter and the canonical and non-canonical TGF-ß pathways, and the differences between the electrotactic responses of NA and AS HBF point to the possible role of their dcEFs in desensitisation in the asthmatic process. This process may impair the physiologic behaviour of AS HBF functions, including cell motility, ECM deposition, and contractility, thus promoting bronchial wall remodelling, which is a characteristic of bronchial asthma.

14.
Pharmaceutics ; 15(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37242592

ABSTRACT

Saponins are plant metabolites that possess multidirectional biological activities, among these is antitumor potential. The mechanisms of anticancer activity of saponins are very complex and depend on various factors, including the chemical structure of saponins and the type of cell they target. The ability of saponins to enhance the efficacy of various chemotherapeutics has opened new perspectives for using them in combined anticancer chemotherapy. Co-administration of saponins with targeted toxins makes it possible to reduce the dose of the toxin and thus limit the side effects of overall therapy by mediating endosomal escape. Our study indicates that the saponin fraction CIL1 of Lysimachia ciliata L. can improve the efficacy of the EGFR-targeted toxin dianthin (DE). We investigated the effect of cotreatment with CIL1 + DE on cell viability in a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, on proliferation in a crystal violet assay (CV) and on pro-apoptotic activity using Annexin V/7 Actinomycin D (7-AAD) staining and luminescence detection of caspase levels. Cotreatment with CIL1 + DE enhanced the target cell-specific cytotoxicity, as well as the antiproliferative and proapoptotic properties. We found a 2200-fold increase in both the cytotoxic and antiproliferative efficacy of CIL1 + DE against HER14-targeted cells, while the effect on control NIH3T3 off-target cells was less profound (6.9- or 5.4-fold, respectively). Furthermore, we demonstrated that the CIL1 saponin fraction has a satisfactory in vitro safety profile with a lack of cytotoxic and mutagenic potential.

15.
Cell Mol Biol Lett ; 16(4): 625-37, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21910090

ABSTRACT

The formation of aqueous intercellular channels mediating gap junctional intercellular coupling (GJIC) is a canonical function of connexins (Cx). In contrast, mechanisms of GJIC-independent involvement of connexins in cancer formation and metastasis remain a matter of debate. Because of the role of Cx43 in the determination of carcinoma cell invasive potential, we addressed the problem of the possible Cx43 involvement in early prostate cancer invasion. For this purpose, we analysed Cx43-positive DU-145 cell subsets established from the progenies of the cells most readily transmigrating microporous membranes. These progenies displayed motile activity similar to the control DU-145 cells but were characterized by elevated Cx43 expression levels and GJIC intensity. Thus, apparent links exist between Cx43 expression and transmigration potential of DU-145 cells. Moreover, Cx43 expression profiles in the analysed DU-145 subsets were not affected by intercellular contacts and chemical inhibition of GJIC during the transmigration. Our observations indicate that neither cell motility nor GJIC determines the transmigration efficiency of DU-145 cells. However, we postulate that selective transmigration of prostate cancer cells expressing elevated levels of Cx43 expression may be crucial for the "leading front" formation during cancer invasion.


Subject(s)
Connexin 43/metabolism , Gap Junctions/metabolism , Prostate/metabolism , Prostatic Neoplasms , Transendothelial and Transepithelial Migration , Cell Communication , Cell Line, Tumor , Cell Movement , Connexin 43/antagonists & inhibitors , Connexin 43/genetics , Gap Junctions/genetics , Gap Junctions/pathology , Gene Expression/drug effects , Gene Silencing/drug effects , Glycyrrhetinic Acid/pharmacology , Humans , Male , Membranes, Artificial , Neoplasm Invasiveness , Porosity , Prostate/drug effects , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/pharmacology
16.
BMC Mol Cell Biol ; 22(1): 19, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33711932

ABSTRACT

BACKGROUND: The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-ß1 (TGF-ß1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-ß1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS: Our results show that the asthmatic co-cultures are more sensitive to the TGF-ß1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-ß1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-ß1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS: Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.


Subject(s)
Asthma/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/physiology , Fibroblasts/metabolism , Adult , Aged , Bronchi/metabolism , Case-Control Studies , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Female , Humans , Middle Aged , Myofibroblasts/metabolism , Transforming Growth Factor beta1/pharmacology , Young Adult
17.
ACS Omega ; 6(18): 12168-12178, 2021 May 11.
Article in English | MEDLINE | ID: mdl-34056370

ABSTRACT

Nanoparticles made of amphiphilic block copolymers are commonly used in the preparation of nano-sized drug delivery systems. Poly(styrene)-block -poly(acrylic acid) (PS-PAA) copolymers have been proposed for drug delivery purposes; however, the drug loading capacity and cytotoxicity of PS-PAA nanoparticles are still not fully recognized. Herein, we investigated the accumulation of a model hydrophobic drug, curcumin, and its spatial distribution inside the PS-PAA nanoparticles. Experimental methods and atomistic molecular dynamics simulations were used to understand the molecular structure of the PS core and how curcumin molecules interact and organize within the PS matrix. The hydrophobic core of the PS-PAA nanoparticles consists of adhering individually coiled polymeric chains and is compact enough to prevent post-incorporation of curcumin. However, the drug has a good affinity for the PS matrix and can be efficiently enclosed in the PS-PAA nanoparticles at the formation stage. At low concentrations, curcumin is evenly distributed in the PS core, while its aggregates were observed above ca. 2 wt %. The nanoparticles were found to have relatively low cytotoxicity to human skin fibroblasts, and the presence of curcumin further increased their biocompatibility. Our work provides a detailed description of the interactions between a hydrophobic drug and PS-PAA nanoparticles and information on the biocompatibility of these anionic nanostructures which may be relevant to the development of amphiphilic copolymer-based drug delivery systems.

18.
Folia Biol (Krakow) ; 58(1-2): 21-7, 2010.
Article in English | MEDLINE | ID: mdl-20420191

ABSTRACT

Single human skin fibroblasts and the skin keratinocyte cell line HaCaT show contact guidance and elongate along narrow (1-2 microm) scratches in glass substratum. During cell division these cells orientate their mitotic spindles along the long axis of the cell. Immunofluorescence staining of actin, tubulin, chromatin, and the nuclear NuMA protein complex demonstrated that cell elongation along scratches is accompanied by a corresponding rearrangement in the cytoskeleton. The results and literature suggest the following steps in the interplay between outside-in and inside-out signalling in the regulation of cell division orientation by extracellular factors. The interaction of cell surface with an anisotropy in the local environment causes changes in F-actin organization, cell elongation and alignment of stress fibres along the cell axis. This is accompanied by a corresponding reorientation of microtubules. Microtubules mediate between cell shape changes dependent upon cell interaction with substratum or other cells, the cortical actin and the position of centrosomes. Centrosomes determine the position and orientation of the mitotic spindle. The astral and central microtubules of the mitotic spindle control the localization of contraction-relaxation in the cell cortex and the position of the constriction ring and cell division plane.


Subject(s)
Cell Division , Cytoskeleton/physiology , Fibroblasts/cytology , Keratinocytes/cytology , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Cell Adhesion/physiology , Cell Cycle Proteins , Cell Line , Fenofibrate , Humans , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Surface Properties
19.
Acta Biochim Pol ; 67(4): 441-448, 2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33245228

ABSTRACT

The basic hallmarks of bronchial asthma, one of the most common chronic diseases occurring in the world, are chronic inflammation, remodelling of the bronchial wall and its hyperresponsiveness to environmental stimuli. It was found out that the fibroblast to myofibroblast transition (FMT), a key phenomenon in subepithelial fibrosis of the bronchial wall, was crucial for the development of asthma. Our previous studies showed that HBFs derived from asthmatic patients cultured in vitro display some inherent features which facilitate their TGF-b-induced FMT. Although usefulness of standard '2D' cultures is invaluable, they have many limitations. As HBFs interact with extracellular matrix proteins in the connective tissue, which can affect the FMT potential, we have decided to expand our '2D' model to in vitro cell cultures in 3D using collagen gels. Our results showed that 1.5 mg/ml concentration of collagen is suitable for HBFs growth, motility, and phenotypic shifts. Moreover, we demonstrated that in the TGF-ß1-activated HBF populations derived from asthmatics, the expression of fibrosis-related genes (ACTA2, TAGLN, SERPINE1, COL1A1, FN1 and CCN2) was significantly increased in comparison to the non-asthmatic ones. We also confirmed that it is related to the TGF-ß/Smad2/3 profibrotic pathway intensification. In summary, the results of our study undoubtedly demonstrate that HBFs from asthmatics have unique intrinsic features which predispose them, regardless the culture conditions, to the increased FMT under the influence of TGF-ß1.


Subject(s)
Asthma/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Pulmonary Fibrosis/metabolism , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Actins/genetics , Actins/metabolism , Adult , Asthma/complications , Asthma/genetics , Asthma/pathology , Bronchi/metabolism , Bronchi/pathology , Case-Control Studies , Cell Culture Techniques , Cell Differentiation , Collagen/pharmacology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Fibronectins/genetics , Fibronectins/metabolism , Gels , Gene Expression Regulation , Humans , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Middle Aged , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myofibroblasts/drug effects , Myofibroblasts/pathology , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Pulmonary Fibrosis/complications , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/pathology , Signal Transduction , Smad2 Protein/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta1/pharmacology
20.
Sci Rep ; 10(1): 16492, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020537

ABSTRACT

Airway remodelling with subepithelial fibrosis, which abolishes the physiological functions of the bronchial wall, is a major issue in bronchial asthma. Human bronchial fibroblasts (HBFs) derived from patients diagnosed with asthma display in vitro predestination towards TGF-ß1-induced fibroblast-to-myofibroblast transition (FMT), a key event in subepithelial fibrosis. As commonly used anti-asthmatic drugs do not reverse the structural changes of the airways, and the molecular mechanism of enhanced asthma-related TGF-ß1-induced FMT is poorly understood, we investigated the balance between the profibrotic TGF-ß/Smad2/3 and the antifibrotic TGF-ß/Smad1/5/9 signalling pathways and its role in the myofibroblast formation of HBF populations derived from asthmatic and non-asthmatic donors. Our findings showed for the first time that TGF-ß-induced activation of the profibrotic Smad2/3 signalling pathway was enhanced, but the activation of the antifibrotic Smad1/5/(8)9 pathway by TGF-ß1 was significantly diminished in fibroblasts from asthmatic donors compared to those from their healthy counterparts. The impairment of the antifibrotic TGF-ß/Smad1/5/(8)9 pathway in HBFs derived from asthmatic donors was correlated with enhanced FMT. Furthermore, we showed that Smad1 silencing in HBFs from non-asthmatic donors increased the FMT potential in these cells. Additionally, we demonstrated that activation of antifibrotic Smad signalling via BMP7 or isoliquiritigenin [a small-molecule activator of the TGF-ß/Smad1/5/(8)9 pathway] administration prevents FMT in HBFs from asthmatic donors through downregulation of profibrotic genes, e.g., α-SMA and fibronectin. Our data suggest that influencing the balance between the antifibrotic and profibrotic TGF-ß/Smad signalling pathways using BMP7-mimetic compounds presents an unprecedented opportunity to inhibit subepithelial fibrosis during airway remodelling in asthma.


Subject(s)
Asthma/metabolism , Fibroblasts/metabolism , Myofibroblasts/metabolism , Signal Transduction/physiology , Smad Proteins, Receptor-Regulated/metabolism , Transforming Growth Factor beta/metabolism , Adult , Airway Remodeling/physiology , Bronchi/metabolism , Case-Control Studies , Cells, Cultured , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL