Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Biol Chem ; 300(3): 105739, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342435

ABSTRACT

The p90 ribosomal S6 kinases (RSK) family of serine/threonine kinases comprises four isoforms (RSK1-4) that lie downstream of the ERK1/2 mitogen-activated protein kinase pathway. RSKs are implicated in fine tuning of cellular processes such as translation, transcription, proliferation, and motility. Previous work showed that pathogens such as Cardioviruses could hijack any of the four RSK isoforms to inhibit PKR activation or to disrupt cellular nucleocytoplasmic trafficking. In contrast, some reports suggest nonredundant functions for distinct RSK isoforms, whereas Coffin-Lowry syndrome has only been associated with mutations in the gene encoding RSK2. In this work, we used the analog-sensitive kinase strategy to ask whether the cellular substrates of distinct RSK isoforms differ. We compared the substrates of two of the most distant RSK isoforms: RSK1 and RSK4. We identified a series of potential substrates for both RSKs in cells and validated RanBP3, PDCD4, IRS2, and ZC3H11A as substrates of both RSK1 and RSK4, and SORBS2 as an RSK1 substrate. In addition, using mutagenesis and inhibitors, we confirmed analog-sensitive kinase data showing that endogenous RSKs phosphorylate TRIM33 at S1119. Our data thus identify a series of potential RSK substrates and suggest that the substrates of RSK1 and RSK4 largely overlap and that the specificity of the various RSK isoforms likely depends on their cell- or tissue-specific expression pattern.


Subject(s)
Ribosomal Protein S6 Kinases, 90-kDa , Substrate Specificity , Humans , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Ribosomal Protein S6 Kinases, 90-kDa/chemistry , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Reproducibility of Results , Mutagenesis
2.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091472

ABSTRACT

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Subject(s)
Host Microbial Interactions/physiology , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Bacteria/pathogenicity , Bacterial Infections/genetics , Bacterial Infections/metabolism , Biological Evolution , Cell Line , Gene Expression Regulation, Viral/genetics , Host Microbial Interactions/genetics , Humans , Immediate-Early Proteins/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Replication/physiology , Viruses/pathogenicity
3.
PLoS Pathog ; 18(12): e1011042, 2022 12.
Article in English | MEDLINE | ID: mdl-36508477

ABSTRACT

Proteins from some unrelated pathogens, including small RNA viruses of the family Picornaviridae, large DNA viruses such as Kaposi sarcoma-associated herpesvirus and even bacteria of the genus Yersinia can recruit cellular p90-ribosomal protein S6 kinases (RSKs) through a common linear motif and maintain the kinases in an active state. On the one hand, pathogens' proteins might hijack RSKs to promote their own phosphorylation (direct target model). On the other hand, some data suggested that pathogens' proteins might dock the hijacked RSKs toward a third interacting partner, thus redirecting the kinase toward a specific substrate. We explored the second hypothesis using the Cardiovirus leader protein (L) as a paradigm. The L protein is known to trigger nucleocytoplasmic trafficking perturbation, which correlates with hyperphosphorylation of phenylalanine-glycine (FG)-nucleoporins (FG-NUPs) such as NUP98. Using a biotin ligase fused to either RSK or L, we identified FG-NUPs as primary partners of the L-RSK complex in infected cells. An L protein mutated in the central RSK-interaction motif was readily targeted to the nuclear envelope whereas an L protein mutated in the C-terminal domain still interacted with RSK but failed to interact with the nuclear envelope. Thus, L uses distinct motifs to recruit RSK and to dock the L-RSK complex toward the FG-NUPs. Using an analog-sensitive RSK2 mutant kinase, we show that, in infected cells, L can trigger RSK to use NUP98 and NUP214 as direct substrates. Our data therefore illustrate a novel virulence mechanism where pathogens' proteins hijack and retarget cellular protein kinases toward specific substrates, to promote their replication or to escape immunity.


Subject(s)
Cardiovirus , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Protein Kinases/metabolism , Phosphorylation
4.
Environ Microbiol ; 22(6): 1997-2000, 2020 06.
Article in English | MEDLINE | ID: mdl-32342578

ABSTRACT

The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.


Subject(s)
Betacoronavirus , Severe acute respiratory syndrome-related coronavirus , COVID-19 , Coronavirus Infections , Disease Outbreaks , Humans , Pandemics , Pneumonia, Viral , SARS-CoV-2
5.
J Virol ; 93(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31292248

ABSTRACT

Leader (L) proteins encoded by cardioviruses are multifunctional proteins that contribute to innate immunity evasion. L proteins of Theiler's murine encephalomyelitis virus (TMEV), Saffold virus (SAFV), and encephalomyocarditis virus (EMCV) were reported to inhibit stress granule assembly in infected cells. Here, we show that TMEV L can act at two levels in the stress granule formation pathway: on the one hand, it can inhibit sodium arsenite-induced stress granule assembly without preventing eIF2α phosphorylation and, thus, acts downstream of eIF2α; on the other hand, it can inhibit eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation and the consequent PKR-mediated eIF2α phosphorylation. Interestingly, coimmunostaining experiments revealed that PKR colocalizes with viral double-stranded RNA (dsRNA) in cells infected with L-mutant viruses but not in cells infected with the wild-type virus. Furthermore, PKR coprecipitated with dsRNA from cells infected with L-mutant viruses significantly more than from cells infected with the wild-type virus. These data strongly suggest that L blocks PKR activation by preventing the interaction between PKR and viral dsRNA. In infected cells, L also rendered PKR refractory to subsequent activation by poly(I·C). However, no interaction was observed between L and either dsRNA or PKR. Taken together, our results suggest that, unlike other viral proteins, L indirectly acts on PKR to negatively regulate its responsiveness to dsRNA.IMPORTANCE The leader (L) protein encoded by cardioviruses is a very short multifunctional protein that contributes to evasion of the host innate immune response. This protein notably prevents the formation of stress granules in infected cells. Using Theiler's virus as a model, we show that L proteins can act at two levels in the stress response pathway leading to stress granule formation, the most striking one being the inhibition of eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation. Interestingly, the leader protein appears to inhibit PKR via a novel mechanism by rendering this kinase unable to detect double-stranded RNA, its typical activator. Unlike other viral proteins, such as influenza virus NS1, the leader protein appears to interact with neither PKR nor double-stranded RNA, suggesting that it acts indirectly to trigger the inhibition of the kinase.


Subject(s)
Enzyme Activation , Host-Pathogen Interactions , Immune Evasion , Theilovirus/physiology , Viral Proteins/metabolism , eIF-2 Kinase/antagonists & inhibitors , Animals , Cell Line , Humans , Protein Binding , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism
6.
PLoS Pathog ; 14(4): e1006989, 2018 04.
Article in English | MEDLINE | ID: mdl-29652922

ABSTRACT

The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Adenine Nucleotides/metabolism , Endoribonucleases/antagonists & inhibitors , Murine hepatitis virus/physiology , Oligoribonucleotides/metabolism , Theilovirus/metabolism , Viral Proteins/metabolism , Animals , Antiviral Agents/metabolism , Endoribonucleases/physiology , HeLa Cells , Hepatitis, Viral, Animal/metabolism , Hepatitis, Viral, Animal/virology , Host-Pathogen Interactions , Humans , Mice
7.
Mol Pharm ; 17(11): 4375-4385, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33017153

ABSTRACT

Formaldehyde-inactivated toxoid vaccines have been in use for almost a century. Despite formaldehyde's deceptively simple structure, its reactions with proteins are complex. Treatment of immunogenic proteins with aqueous formaldehyde results in heterogenous mixtures due to a variety of adducts and cross-links. In this study, we aimed to further elucidate the reaction products of formaldehyde reaction with proteins and report unique modifications in formaldehyde-treated cytochrome c and corresponding synthetic peptides. Synthetic peptides (Ac-GDVEKGAK and Ac-GDVEKGKK) were treated with isotopically labeled formaldehyde (13CH2O or CD2O) followed by purification of the two main reaction products. This allowed for their structural elucidation by (2D)-nuclear magnetic resonance and nanoscale liquid chromatography-coupled mass spectrometry analysis. We observed modifications resulting from (i) formaldehyde-induced deamination and formation of α,ß-unsaturated aldehydes and methylation on two adjacent lysine residues and (ii) formaldehyde-induced methylation and formylation of two adjacent lysine residues. These products react further to form intramolecular cross-links between the two lysine residues. At higher peptide concentrations, these two main reaction products were also found to subsequently cross-link to lysine residues in other peptides, forming dimers and trimers. The accurate identification and quantification of formaldehyde-induced modifications improves our knowledge of formaldehyde-inactivated vaccine products, potentially aiding the development and registration of new vaccines.


Subject(s)
Cytochromes c/chemistry , Formaldehyde/pharmacology , Lysine/chemistry , Peptides/chemistry , Aldehydes/chemistry , Chromatography, High Pressure Liquid/methods , Cross-Linking Reagents/chemistry , Deamination/drug effects , Kinetics , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Methylation/drug effects , Molecular Structure , Vaccines, Inactivated/chemistry
8.
J Virol ; 91(14)2017 07 15.
Article in English | MEDLINE | ID: mdl-28446680

ABSTRACT

Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV.IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L, indicating that this virus originates from mice.


Subject(s)
Encephalitis Viruses/genetics , Encephalitis Viruses/physiology , Endoribonucleases/antagonists & inhibitors , Picornaviridae/genetics , Picornaviridae/physiology , Species Specificity , Viral Nonstructural Proteins/metabolism , Animals , Humans , Mice , Rats
9.
Gut ; 66(5): 920-929, 2017 05.
Article in English | MEDLINE | ID: mdl-27006186

ABSTRACT

OBJECTIVE: The hepatitis E virus (HEV) is responsible for approximately 20 million infections per year worldwide. Although most infected people can spontaneously clear an HEV infection, immune-compromised individuals may evolve towards chronicity. Chronic HEV infection can be cured using ribavirin, but viral isolates with low ribavirin sensitivity have recently been identified. Although some HEV isolates can be cultured in vitro, in vivo studies are essentially limited to primates and pigs. Since the use of these animals is hampered by financial, practical and/or ethical concerns, we evaluated if human liver chimeric mice could serve as an alternative. DESIGN: Humanised mice were inoculated with different HEV-containing preparations. RESULTS: Chronic HEV infection was observed after intrasplenic injection of cell culture-derived HEV, a filtered chimpanzee stool suspension and a patient-derived stool suspension. The viral load was significantly higher in the stool compared with the plasma. Overall, the viral titre in genotype 3-infected mice was lower than that in genotype 1-infected mice. Analysis of liver tissue of infected mice showed the presence of viral RNA and protein, and alterations in host gene expression. Intrasplenic injection of HEV-positive patient plasma and oral inoculation of filtered stool suspensions did not result in robust infection. Finally, we validated our model for the evaluation of novel antiviral compounds against HEV using ribavirin. CONCLUSIONS: Human liver chimeric mice can be infected with HEV of different genotypes. This small animal model will be a valuable tool for the in vivo study of HEV infection and the evaluation of novel antiviral molecules.


Subject(s)
Disease Models, Animal , Hepatitis E virus/genetics , Hepatitis E/virology , Liver/chemistry , RNA, Viral/analysis , Viral Proteins/analysis , Animals , Antiviral Agents/therapeutic use , Gene Expression , Genotype , Hepatitis E/drug therapy , Hepatitis E/genetics , Hepatocytes/transplantation , Hepatocytes/virology , Host-Pathogen Interactions , Humans , Mice , Ribavirin/therapeutic use , Transplantation Chimera , Viral Load
10.
J Neurochem ; 141(3): 387-399, 2017 05.
Article in English | MEDLINE | ID: mdl-28266711

ABSTRACT

A critical role has been assigned to protein kinase C (PKC)ε in the control of intracellular calcium oscillations triggered upon activation of type 5 metabotropic glutamate receptor (mGluR5) in cultured astrocytes. Nevertheless, the physiological significance of this particular signalling profile in the response of astrocytes to glutamate remains largely unknown. Considering that kinases are frequently involved in the regulation of G protein-coupled receptors, we have examined a putative link between the nature of the calcium signals and the response regulation upon repeated exposures of astrocytes to the agonist (S)-3,5-dihydroxyphenylglycine. We show that upon repeated mGluR5 activations, a robust desensitization was observed in astrocytes grown in culture conditions favouring the peak-plateau-type response. At variance, in cell cultures where calcium oscillations were predominating, the response was fully preserved even during repeated challenges with the agonist. Pharmacological inhibition of PKCε or genetic suppression of this isoform using shRNA was found to convert an oscillatory calcium profile to a sustained calcium mobilization and this latter profile was subject to desensitization upon repetitive mGluR5 activation. Our results suggest a yet undocumented scheme in which the activity of PKCε contributes to preserve the receptor sensitivity upon repeated or sustained activations. Cover Image for this issue: doi: 10.1111/jnc.13797.


Subject(s)
Astrocytes/metabolism , Calcium Signaling/drug effects , Protein Kinase C-epsilon/metabolism , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/metabolism , Alkanes/pharmacology , Animals , Astrocytes/drug effects , Cyclopropanes/pharmacology , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry , Lentivirus/genetics , Methoxyhydroxyphenylglycol/analogs & derivatives , Methoxyhydroxyphenylglycol/pharmacology , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Transduction, Genetic
11.
J Virol ; 90(4): 2031-8, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26656686

ABSTRACT

UNLABELLED: Interferon beta (IFN-ß) is a key component of cellular innate immunity in mammals, and it constitutes the first line of defense during viral infection. Studies with cultured cells previously showed that almost all nucleated cells are able to produce IFN-ß to various extents, but information about the in vivo sources of IFN-ß remains incomplete. By applying immunohistochemistry and employing conditional-reporter mice that express firefly luciferase under the control of the IFN-ß promoter in either all or only distinct cell types, we found that astrocytes are the main producers of IFN-ß after infection of the brain with diverse neurotropic viruses, including rabies virus, Theiler's murine encephalomyelitis virus, and vesicular stomatitis virus. Analysis of a panel of knockout mouse strains revealed that sensing of viral components via both RIG-I-like helicases and Toll-like receptors contributes to IFN induction in the infected brain. A genetic approach to permanently mark rabies virus-infected cells in the brain showed that a substantial number of astrocytes became labeled and, therefore, must have been infected by the virus at least transiently. Thus, our results strongly indicate that abortive viral infection of astrocytes can trigger pattern recognition receptor signaling events which result in secretion of IFN-ß that confers antiviral protection. IMPORTANCE: Previous work indicated that astrocytes are the main producers of IFN after viral infection of the central nervous system (CNS), but it remained unclear how astrocytes might sense those viruses which preferentially replicate in neurons. We have now shown that virus sensing by both RIG-I-like helicases and Toll-like receptors is involved. Our results further demonstrate that astrocytes get infected in a nonproductive manner under these conditions, indicating that abortive infection of astrocytes plays a previously unappreciated role in the innate antiviral defenses of the CNS.


Subject(s)
Astrocytes/immunology , Brain/immunology , Brain/virology , Interferon-beta/metabolism , Rabies virus/immunology , Theilovirus/immunology , Vesiculovirus/immunology , Animals , Artificial Gene Fusion , Astrocytes/virology , Gene Expression Profiling , Genes, Reporter , Immunohistochemistry , Luciferases/analysis , Luciferases/genetics , Mice, Inbred C57BL , Mice, Knockout , Receptors, Immunologic/metabolism , Signal Transduction
12.
Purinergic Signal ; 13(2): 191-201, 2017 06.
Article in English | MEDLINE | ID: mdl-27915383

ABSTRACT

The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.


Subject(s)
Adenosine A2 Receptor Antagonists/chemical synthesis , Adenosine A2 Receptor Antagonists/pharmacokinetics , Receptor, Adenosine A2A/metabolism , Triazines/chemical synthesis , Triazines/pharmacokinetics , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Adenosine A2 Receptor Antagonists/chemistry , Humans , Receptor, Adenosine A2A/drug effects , Triazines/chemistry , Triazoles/chemistry
13.
J Gen Virol ; 97(6): 1350-1355, 2016 06.
Article in English | MEDLINE | ID: mdl-26959376

ABSTRACT

Saffold virus (SAFV) is a highly seroprevalent human Cardiovirus discovered recently. No clear association between SAFV infection and human disease has been established. Rare infection cases, however, correlated with neurological symptoms. To gain insight into the pathogenesis potential of the virus, we performed experimental mouse infection with SAFV strains of genotypes 2 and 3 (SAFV-2 and SAFV-3). After intraperitoneal infection, both strains exhibited a typical Cardiovirus tropism. Viral load was most prominent in the pancreas. Heart, spleen, brain and spinal cord were also infected. In IFN-receptor 1 deficient (IFNAR-KO) mice, SAFV-3 caused a severe encephalitis. The virus was detected by immunohistochemistry in many parts of the brain and spinal cord, both in neurons and astrocytes, but astrocyte infection was more extensive. In vitro, SAFV-3 also infected astrocytes better than neurons in mixed primary cultures. Astrocytes were, however, very efficiently protected by IFN-α/ß treatment.


Subject(s)
Cardiovirus Infections/pathology , Cardiovirus Infections/virology , Nervous System/pathology , Nervous System/virology , Theilovirus/physiology , Viral Tropism , Animal Structures/virology , Animals , Disease Models, Animal , Immunohistochemistry , Mice , Microscopy , Viral Load
14.
J Virol ; 89(16): 8580-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26063423

ABSTRACT

Theiler's murine encephalomyelitis virus (TMEV) is a member of the genus Cardiovirus in the Picornaviridae, a family of positive-sense single-stranded RNA viruses. Previously, we demonstrated that in the related cardiovirus, Encephalomyocarditis virus, a programmed-1 ribosomal frameshift (1 PRF) occurs at a conserved G_GUU_UUU sequence within the 2B-encoding region of the polyprotein open reading frame (ORF). Here we show that-1 PRF occurs at a similar site during translation of the TMEV genome. In addition, we demonstrate that a predicted 3= RNA stem-loop structure at a noncanonical spacing downstream of the shift site is required for efficient frameshifting in TMEV and that frameshifting also requires virus infection. Mutating the G_GUU_UUU shift site to inhibit frameshifting results in an attenuated virus with reduced growth kinetics and a small-plaque phenotype. Frameshifting in the virus context was found to be extremely efficient at 74 to 82%, which, to our knowledge, is the highest frameshifting efficiency recorded to date for any virus. We propose that highly efficient-1 PRF in TMEV provides a mechanism to escape the confines of equimolar expression normally inherent in the single-polyprotein expression strategy of picornaviruses.


Subject(s)
Frameshifting, Ribosomal/genetics , Theilovirus/genetics , Animals , Cell Line , Immunoblotting , Luciferases , Mass Spectrometry , Mice , Mutagenesis , Recombination, Genetic/genetics , Rosaniline Dyes , Viral Plaque Assay
15.
J Virol ; 88(7): 3874-84, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24453359

ABSTRACT

UNLABELLED: We examined the antiviral response promoted by type I interferons (IFN) in primary mouse neurons. IFN treatment of neuron cultures strongly upregulated the transcription of IFN-stimulated genes but conferred a surprisingly low resistance to infection by neurotropic viruses such as Theiler's murine encephalomyelitis virus (TMEV) or vesicular stomatitis virus (VSV). Response of primary mouse neurons to IFN treatment was heterogeneous, as many neurons failed to express the typical IFN response marker Mx1 after IFN treatment. This heterogeneous response of primary neurons correlated with a low level of basal expression of IFN-stimulated genes, such as Stat1, that are involved in signal transduction of the IFN response. In addition, transcriptomic analysis identified 15 IFN-responsive genes whose expression was low in IFN-treated primary neurons compared to that of primary fibroblasts derived from the same mice (Dhx58, Gvin1, Sp100, Ifi203 isoforms 1 and 2, Irgm2, Lgals3bp, Ifi205, Apol9b, Ifi204, Ifi202b, Tor3a, Slfn2, Ifi35, Lgals9). Among these genes, the gene coding for apolipoprotein L9b (Apol9b) displayed antiviral activity against Theiler's virus when overexpressed in L929 cells or in primary neurons. Accordingly, knocking down Apol9b expression in L929 cells increased viral replication. Therefore, we identified a new antiviral protein induced by interferon, ApoL9b, whose lack of expression in primary neurons likely contributes to the high sensitivity of these cells to viral infection. IMPORTANCE: The type I interferon (IFN) response is an innate immune defense mechanism that is critical to contain viral infection in the host until an adaptive immune response can be mounted. Neurons are a paradigm for postmitotic, highly differentiated cells. Our data show that primary mouse neurons that are exposed to type I interferon remain surprisingly susceptible to viral infection. On one hand, the low level of basal expression of some factors in neurons might prevent a rapid response of these cells. On the other hand, some genes that are typically activated by type I interferon in other cell types are expressed at much lower levels in neurons. Among these genes is the gene encoding apolipoprotein L9, a protein that proved to have antiviral activity against the neurotropic Theiler's murine encephalomyelitis virus. Our data suggest important functional differences in the IFN response mounted by specific cell populations.


Subject(s)
Apolipoproteins/biosynthesis , Gene Expression , Interferon Type I/immunology , Neurons/immunology , Neurons/virology , Theilovirus/immunology , Vesiculovirus/immunology , Animals , Cells, Cultured , Fibroblasts/immunology , Fibroblasts/virology , Gene Expression Profiling , Gene Knockdown Techniques , Mice
16.
PLoS Pathog ; 9(6): e1003474, 2013.
Article in English | MEDLINE | ID: mdl-23825954

ABSTRACT

Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.


Subject(s)
Cardiovirus Infections/metabolism , Endoribonucleases/antagonists & inhibitors , Immune Evasion/physiology , Immunity, Innate , Theilovirus/metabolism , Viral Proteins/metabolism , Animals , Cardiovirus Infections/genetics , Cardiovirus Infections/immunology , Cardiovirus Infections/pathology , Cell Line , Cricetinae , Endoribonucleases/genetics , Endoribonucleases/immunology , Endoribonucleases/metabolism , Humans , Mice , Mice, Mutant Strains , Protein Structure, Tertiary , Species Specificity , Theilovirus/genetics , Theilovirus/immunology , Viral Proteins/genetics , Viral Proteins/immunology
17.
Proc Natl Acad Sci U S A ; 108(19): 7944-9, 2011 May 10.
Article in English | MEDLINE | ID: mdl-21518880

ABSTRACT

Type I and type III IFNs bind to different cell-surface receptors but induce identical signal transduction pathways, leading to the expression of antiviral host effector molecules. Despite the fact that type III IFN (IFN-λ) has been shown to predominantly act on mucosal organs, in vivo infection studies have failed to attribute a specific, nonredundant function. Instead, a predominant role of type I IFN was observed, which was explained by the ubiquitous expression of the type I IFN receptor. Here we comparatively analyzed the role of functional IFN-λ and type I IFN receptor signaling in the innate immune response to intestinal rotavirus infection in vivo, and determined viral replication and antiviral gene expression on the cellular level. We observed that both suckling and adult mice lacking functional receptors for IFN-λ were impaired in the control of oral rotavirus infection, whereas animals lacking functional receptors for type I IFN were similar to wild-type mice. Using Mx1 protein accumulation as marker for IFN responsiveness of individual cells, we demonstrate that intestinal epithelial cells, which are the prime target cells of rotavirus, strongly responded to IFN-λ but only marginally to type I IFN in vivo. Systemic treatment of suckling mice with IFN-λ repressed rotavirus replication in the gut, whereas treatment with type I IFN was not effective. These results are unique in identifying a critical role of IFN-λ in the epithelial antiviral host defense.


Subject(s)
Cytokines/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/virology , Animals , Immunity, Innate , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/immunology , Rotavirus/immunology , Rotavirus/physiology , Rotavirus Infections/immunology , Rotavirus Infections/pathology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Signal Transduction/immunology , Virus Replication
18.
Virologie (Montrouge) ; 18(5): 264-277, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-33065920

ABSTRACT

RNase L is a well-known effector of the type I interferon pathway. This review focuses on the recent developments of RNase L activation and on the antagonism of the OAS-RNase L pathway by viral proteins. Recent structural data show that two 2'-5' oligoadenylate molecules can bridge ankyrin domains of two RNase L subunits bound in opposite orientations. The binding of nucleotides to the pseudokinase domain further strengthens the dimer and imparts an active conformation to the ribonuclease. The OAS/RNase L pathway is active against many viruses and viruses evolved in several ways to escape this pathway. Influenza virus A acts upstream of this pathway by hiding double stranded RNA through its NS1 protein. In this way, it also inhibits the PKR and TLR-3 activation by double stranded RNA. Theiler's virus acts downstream of the OAS/RNase L pathway, through the direct interaction between protein L* and RNase L. By acting on the effector enzyme, Theiler's virus ensures a strong RNase L inhibition, which seems to be particularly useful for the infection of macrophages. In conclusion, viruses have developed distinct strategies to escape RNase L activity, that are likely dependent on their tropism. The fact that viral proteins have evolved to specifically antagonize RNase L outlines the importance of this particular IFN effector in cells infected by those viruses.

19.
Nucleus ; 15(1): 2350178, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38717150

ABSTRACT

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Subject(s)
Virus Diseases , Humans , Virus Diseases/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
20.
J Virol ; 85(18): 9614-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21752908

ABSTRACT

Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins.


Subject(s)
Cytoplasmic Granules/metabolism , Theilovirus/pathogenicity , Viral Matrix Proteins/metabolism , Animals , Cell Line , Humans , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Matrix Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL