Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Annu Rev Neurosci ; 43: 55-72, 2020 07 08.
Article in English | MEDLINE | ID: mdl-31874067

ABSTRACT

Although Lorente de No' recognized the anatomical distinction of the hippocampal Cornu Ammonis (CA) 2 region, it had, until recently, been assigned no unique function. Its location between the key players of the circuit, CA3 and CA1, which along with the entorhinal cortex and dentate gyrus compose the classic trisynaptic circuit, further distracted research interest. However, the connectivity of CA2 pyramidal cells, together with unique patterns of gene expression, hints at a much larger contribution to hippocampal information processing than has been ascribed. Here we review recent advances that have identified new roles for CA2 in hippocampal centric processing, together with specialized functions in social memory and, potentially, as a broadcaster of novelty. These new data, together with CA2's role in disease, justify a closer look at how this small region exerts its influence and how it might best be exploited to understand and treat disease-related circuit dysfunctions.


Subject(s)
CA2 Region, Hippocampal/physiology , Hippocampus/physiology , Memory/physiology , Neural Pathways/physiology , Animals , Entorhinal Cortex/physiology , Humans , Nerve Net/physiology
2.
Nature ; 586(7828): 270-274, 2020 10.
Article in English | MEDLINE | ID: mdl-32999460

ABSTRACT

The ability to recognize information that is incongruous with previous experience is critical for survival. Novelty signals have therefore evolved in the mammalian brain to enhance attention, perception and memory1,2. Although the importance of regions such as the ventral tegmental area3,4 and locus coeruleus5 in broadly signalling novelty is well-established, these diffuse monoaminergic transmitters have yet to be shown to convey specific information on the type of stimuli that drive them. Whether distinct types of novelty, such as contextual and social novelty, are differently processed and routed in the brain is unknown. Here we identify the supramammillary nucleus (SuM) as a novelty hub in the hypothalamus6. The SuM region is unique in that it not only responds broadly to novel stimuli, but also segregates and selectively routes different types of information to discrete cortical targets-the dentate gyrus and CA2 fields of the hippocampus-for the modulation of mnemonic processing. Using a new transgenic mouse line, SuM-Cre, we found that SuM neurons that project to the dentate gyrus are activated by contextual novelty, whereas the SuM-CA2 circuit is preferentially activated by novel social encounters. Circuit-based manipulation showed that divergent novelty channelling in these projections modifies hippocampal contextual or social memory. This content-specific routing of novelty signals represents a previously unknown mechanism that enables the hypothalamus to flexibly modulate select components of cognition.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Memory/physiology , Neural Pathways/physiology , Animals , CA2 Region, Hippocampal/cytology , CA2 Region, Hippocampal/physiology , Cognition , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Female , Hypothalamus, Posterior/cytology , Hypothalamus, Posterior/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Social Interaction
3.
Brain ; 145(10): 3637-3653, 2022 10 21.
Article in English | MEDLINE | ID: mdl-34957475

ABSTRACT

Patients with bi-allelic loss of function mutations in the voltage-gated sodium channel Nav1.7 present with congenital insensitivity to pain (CIP), whilst low threshold mechanosensation is reportedly normal. Using psychophysics (n = 6 CIP participants and n = 86 healthy controls) and facial electromyography (n = 3 CIP participants and n = 8 healthy controls), we found that these patients also have abnormalities in the encoding of affective touch, which is mediated by the specialized afferents C-low threshold mechanoreceptors (C-LTMRs). In the mouse, we found that C-LTMRs express high levels of Nav1.7. Genetic loss or selective pharmacological inhibition of Nav1.7 in C-LTMRs resulted in a significant reduction in the total sodium current density, an increased mechanical threshold and reduced sensitivity to non-noxious cooling. The behavioural consequence of loss of Nav1.7 in C-LTMRs in mice was an elevation in the von Frey mechanical threshold and less sensitivity to cooling on a thermal gradient. Nav1.7 is therefore not only essential for normal pain perception but also for normal C-LTMR function, cool sensitivity and affective touch.


Subject(s)
NAV1.7 Voltage-Gated Sodium Channel , Pain Insensitivity, Congenital , Animals , Humans , Mice , Mechanoreceptors , NAV1.7 Voltage-Gated Sodium Channel/genetics , Pain Insensitivity, Congenital/genetics , Sodium
4.
J Anat ; 241(5): 1186-1210, 2022 11.
Article in English | MEDLINE | ID: mdl-34528255

ABSTRACT

Primary sensory neurons are a heterogeneous population of cells able to respond to both innocuous and noxious stimuli. Like most neurons they are highly compartmentalised, allowing them to detect, convey and transfer sensory information. These compartments include specialised sensory endings in the skin, the nodes of Ranvier in myelinated axons, the cell soma and their central terminals in the spinal cord. In this review, we will highlight the importance of these compartments to primary afferent function, describe how these structures are compromised following nerve damage and how this relates to neuropathic pain.


Subject(s)
Ganglia, Spinal , Spinal Cord , Axons , Neurons/physiology , Neurons, Afferent
5.
Brain ; 144(5): 1312-1335, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34128530

ABSTRACT

Chronic pain affects one in five of the general population and is the third most important cause of disability-adjusted life-years globally. Unfortunately, treatment remains inadequate due to poor efficacy and tolerability. There has been a failure in translating promising preclinical drug targets into clinic use. This reflects challenges across the whole drug development pathway, from preclinical models to trial design. Nociceptors remain an attractive therapeutic target: their sensitization makes an important contribution to many chronic pain states, they are located outside the blood-brain barrier, and they are relatively specific. The past decade has seen significant advances in the techniques available to study human nociceptors, including: the use of corneal confocal microscopy and biopsy samples to observe nociceptor morphology, the culture of human nociceptors (either from surgical or post-mortem tissue or using human induced pluripotent stem cell derived nociceptors), the application of high throughput technologies such as transcriptomics, the in vitro and in vivo electrophysiological characterization through microneurography, and the correlation with pain percepts provided by quantitative sensory testing. Genome editing in human induced pluripotent stem cell-derived nociceptors enables the interrogation of the causal role of genes in the regulation of nociceptor function. Both human and rodent nociceptors are more heterogeneous at a molecular level than previously appreciated, and while we find that there are broad similarities between human and rodent nociceptors there are also important differences involving ion channel function, expression, and cellular excitability. These technological advances have emphasized the maladaptive plastic changes occurring in human nociceptors following injury that contribute to chronic pain. Studying human nociceptors has revealed new therapeutic targets for the suppression of chronic pain and enhanced repair. Cellular models of human nociceptors have enabled the screening of small molecule and gene therapy approaches on nociceptor function, and in some cases have enabled correlation with clinical outcomes. Undoubtedly, challenges remain. Many of these techniques are difficult to implement at scale, current induced pluripotent stem cell differentiation protocols do not generate the full diversity of nociceptor populations, and we still have a relatively poor understanding of inter-individual variation in nociceptors due to factors such as age, sex, or ethnicity. We hope our ability to directly investigate human nociceptors will not only aid our understanding of the fundamental neurobiology underlying acute and chronic pain but also help bridge the translational gap.


Subject(s)
Nociceptors/physiology , Animals , Chronic Pain/physiopathology , Humans , Translational Research, Biomedical
6.
Brain ; 140(10): 2570-2585, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28969375

ABSTRACT

See Basbaum (doi:10.1093/brain/awx227) for a scientific commentary on this article. Peripheral neuropathic pain arises as a consequence of injury to sensory neurons; the development of ectopic activity in these neurons is thought to be critical for the induction and maintenance of such pain. Local anaesthetics and anti-epileptic drugs can suppress hyperexcitability; however, these drugs are complicated by unwanted effects on motor, central nervous system and cardiac function, and alternative more selective treatments to suppress hyperexcitability are therefore required. Here we show that a glutamate-gated chloride channel modified to be activated by low doses of ivermectin (but not glutamate) is highly effective in silencing sensory neurons and reversing neuropathic pain-related hypersensitivity. Activation of the glutamate-gated chloride channel expressed in either rodent or human induced pluripotent stem cell-derived sensory neurons in vitro potently inhibited their response to both electrical and algogenic stimuli. We have shown that silencing is achieved both at nerve terminals and the soma and is independent of membrane hyperpolarization and instead likely mediated by lowering of the membrane resistance. Using intrathecal adeno-associated virus serotype 9-based delivery, the glutamate-gated chloride channel was successfully targeted to mouse sensory neurons in vivo, resulting in high level and long-lasting expression of the channel selectively in sensory neurons. This enabled reproducible and reversible modulation of thermal and mechanical pain thresholds in vivo; analgesia was observed for 3 days after a single systemic dose of ivermectin. We did not observe any motor or proprioceptive deficits and noted no reduction in cutaneous afferent innervation or upregulation of the injury marker ATF3 following prolonged glutamate-gated chloride channel expression. Established mechanical and cold pain-related hypersensitivity generated by the spared nerve injury model of neuropathic pain was reversed by ivermectin treatment. The efficacy of ivermectin in ameliorating behavioural hypersensitivity was mirrored at the cellular level by a cessation of ectopic activity in sensory neurons. These findings demonstrate the importance of aberrant afferent input in the maintenance of neuropathic pain and the potential for targeted chemogenetic silencing as a new treatment modality in neuropathic pain.


Subject(s)
Chloride Channels/genetics , Genetic Therapy/methods , Neuralgia/genetics , Protein Engineering/methods , Sensory Receptor Cells/metabolism , Adenoviridae/genetics , Animals , Cells, Cultured , Chloride Channels/biosynthesis , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Neuralgia/metabolism , Neuralgia/therapy , Pain Measurement/methods , Rats , Rats, Sprague-Dawley , Treatment Outcome
7.
Nat Commun ; 15(1): 2190, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467602

ABSTRACT

The precise temporal coordination of neural activity is crucial for brain function. In the hippocampus, this precision is reflected in the oscillatory rhythms observed in CA1. While it is known that a balance between excitatory and inhibitory activity is necessary to generate and maintain these oscillations, the differential contribution of feedforward and feedback inhibition remains ambiguous. Here we use conditional genetics to chronically silence CA1 pyramidal cell transmission, ablating the ability of these neurons to recruit feedback inhibition in the local circuit, while recording physiological activity in mice. We find that this intervention leads to local pathophysiological events, with ripple amplitude and intrinsic frequency becoming significantly larger and spatially triggered local population spikes locked to the trough of the theta oscillation appearing during movement. These phenotypes demonstrate that feedback inhibition is crucial in maintaining local sparsity of activation and reveal the key role of lateral inhibition in CA1 in shaping circuit function.


Subject(s)
Hippocampus , Pyramidal Cells , Mice , Animals , Feedback , Hippocampus/physiology , Pyramidal Cells/physiology , Neurons , CA1 Region, Hippocampal/physiology , Interneurons/physiology , Action Potentials/physiology
8.
Pain ; 164(12): 2780-2791, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37366588

ABSTRACT

ABSTRACT: Insight into nociceptive circuits will ultimately build our understanding of pain processing and aid the development of analgesic strategies. Neural circuit analysis has been advanced greatly by the development of optogenetic and chemogenetic tools, which have allowed function to be ascribed to discrete neuronal populations. Neurons of the dorsal root ganglion, which include nociceptors, have proved challenging targets for chemogenetic manipulation given specific confounds with commonly used DREADD technology. We have developed a cre/lox dependant version of the engineered glutamate-gated chloride channel (GluCl) to restrict and direct its expression to molecularly defined neuronal populations. We have generated GluCl.Cre ON that selectively renders neurons expressing cre-recombinase susceptible to agonist-induced silencing. We have functionally validated our tool in multiple systems in vitro, and subsequently generated viral vectors and tested its applicability in vivo. Using Nav1.8 Cre mice to restrict AAV-GluCl.Cre ON to nociceptors, we demonstrate effective silencing of electrical activity in vivo and concomitant hyposensitivity to noxious thermal and noxious mechanical pain, whereas light touch and motor function remained intact. We also demonstrated that our strategy can effectively silence inflammatory-like pain in a chemical pain model. Collectively, we have generated a novel tool that can be used to selectively silence defined neuronal circuits in vitro and in vivo. We believe that this addition to the chemogenetic tool box will facilitate further understanding of pain circuits and guide future therapeutic development.


Subject(s)
Integrases , Pain , Mice , Animals , Integrases/genetics , Integrases/metabolism , Integrases/pharmacology , Nociceptors , Neurons
9.
Sci Transl Med ; 15(716): eadh3839, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37792955

ABSTRACT

Hyperexcitability in sensory neurons is known to underlie many of the maladaptive changes associated with persistent pain. Chemogenetics has shown promise as a means to suppress such excitability, yet chemogenetic approaches suitable for human applications are needed. PSAM4-GlyR is a modular system based on the human α7 nicotinic acetylcholine and glycine receptors, which responds to inert chemical ligands and the clinically approved drug varenicline. Here, we demonstrated the efficacy of this channel in silencing both mouse and human sensory neurons by the activation of large shunting conductances after agonist administration. Virally mediated expression of PSAM4-GlyR in mouse sensory neurons produced behavioral hyposensitivity upon agonist administration, which was recovered upon agonist washout. Stable expression of the channel led to similar reversible suppression of pain-related behavior even after 10 months of viral delivery. Mechanical and spontaneous pain readouts were also ameliorated by PSAM4-GlyR activation in acute and joint pain inflammation mouse models. Furthermore, suppression of mechanical hypersensitivity generated by a spared nerve injury model of neuropathic pain was also observed upon activation of the channel. Effective silencing of behavioral hypersensitivity was reproduced in a human model of hyperexcitability and clinical pain: PSAM4-GlyR activation decreased the excitability of human-induced pluripotent stem cell-derived sensory neurons and spontaneous activity due to a gain-of-function NaV1.7 mutation causing inherited erythromelalgia. Our results demonstrate the contribution of sensory neuron hyperexcitability to neuropathic pain and the translational potential of an effective, stable, and reversible humanized chemogenetic system for the treatment of pain.


Subject(s)
Neuralgia , Humans , Mice , Animals , Neuralgia/metabolism , Sensory Receptor Cells/metabolism , Mutation , Ganglia, Spinal/metabolism
10.
Pain ; 164(10): 2327-2342, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37366595

ABSTRACT

ABSTRACT: Traumatic peripheral nerve injuries are at high risk of neuropathic pain for which novel effective therapies are urgently needed. Preclinical models of neuropathic pain typically involve irreversible ligation and/or nerve transection (neurotmesis). However, translation of findings to the clinic has so far been unsuccessful, raising questions on injury model validity and clinically relevance. Traumatic nerve injuries seen in the clinic commonly result in axonotmesis (ie, crush), yet the neuropathic phenotype of "painful" nerve crush injuries remains poorly understood. We report the neuropathology and sensory symptoms of a focal nerve crush injury using custom-modified hemostats resulting in either complete ("full") or incomplete ("partial") axonotmesis in adult mice. Assays of thermal and mechanically evoked pain-like behavior were paralleled by transmission electron microscopy, immunohistochemistry, and anatomical tracing of the peripheral nerve. In both crush models, motor function was equally affected early after injury; by contrast, partial crush of the nerve resulted in the early return of pinprick sensitivity, followed by a transient thermal and chronic tactile hypersensitivity of the affected hind paw, which was not observed after a full crush injury. The partially crushed nerve was characterized by the sparing of small-diameter myelinated axons and intraepidermal nerve fibers, fewer dorsal root ganglia expressing the injury marker activating transcription factor 3, and lower serum levels of neurofilament light chain. By day 30, axons showed signs of reduced myelin thickness. In summary, the escape of small-diameter axons from Wallerian degeneration is likely a determinant of chronic pain pathophysiology distinct from the general response to complete nerve injury.


Subject(s)
Crush Injuries , Neuralgia , Peripheral Nerve Injuries , Rats , Mice , Animals , Rats, Sprague-Dawley , Axons/pathology , Crush Injuries/pathology , Nerve Crush , Nerve Regeneration/physiology , Sciatic Nerve/injuries
11.
Neuron ; 110(19): 3091-3105.e9, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35987206

ABSTRACT

A major pathological hallmark of neurodegenerative diseases, including Alzheimer's, is a significant reduction in the white matter connecting the two cerebral hemispheres, as well as in the correlated activity between anatomically corresponding bilateral brain areas. However, the underlying circuit mechanisms and the cognitive relevance of cross-hemispheric (CH) communication remain poorly understood. Here, we show that novelty discrimination behavior activates CH neurons and enhances homotopic synchronized neural oscillations in the visual cortex. CH neurons provide excitatory drive required for synchronous neural oscillations between hemispheres, and unilateral inhibition of the CH circuit is sufficient to impair synchronous oscillations and novelty discrimination behavior. In the 5XFAD and Tau P301S mouse models, CH communication is altered, and novelty discrimination is impaired. These data reveal a hitherto uncharacterized CH circuit in the visual cortex, establishing a causal link between this circuit and novelty discrimination behavior and highlighting its impairment in mouse models of neurodegeneration.


Subject(s)
Hippocampus , Visual Cortex , Animals , Disease Models, Animal , Hippocampus/physiology , Interneurons/physiology , Mice , Neurons/physiology
12.
Neuron ; 110(16): 2571-2587.e13, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35705078

ABSTRACT

Repeated application of noxious stimuli leads to a progressively increased pain perception; this temporal summation is enhanced in and predictive of clinical pain disorders. Its electrophysiological correlate is "wind-up," in which dorsal horn spinal neurons increase their response to repeated nociceptor stimulation. To understand the genetic basis of temporal summation, we undertook a GWAS of wind-up in healthy human volunteers and found significant association with SLC8A3 encoding sodium-calcium exchanger type 3 (NCX3). NCX3 was expressed in mouse dorsal horn neurons, and mice lacking NCX3 showed normal, acute pain but hypersensitivity to the second phase of the formalin test and chronic constriction injury. Dorsal horn neurons lacking NCX3 showed increased intracellular calcium following repetitive stimulation, slowed calcium clearance, and increased wind-up. Moreover, virally mediated enhanced spinal expression of NCX3 reduced central sensitization. Our study highlights Ca2+ efflux as a pathway underlying temporal summation and persistent pain, which may be amenable to therapeutic targeting.


Subject(s)
Calcium , Sodium-Calcium Exchanger , Animals , Humans , Mice , Pain , Posterior Horn Cells , Psychophysics , Sodium-Calcium Exchanger/genetics
13.
Nat Commun ; 12(1): 6114, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34671042

ABSTRACT

In the hippocampal circuit CA3 input plays a critical role in the organization of CA1 population activity, both during learning and sleep. While integrated spatial representations have been observed across the two hemispheres of CA1, these regions lack direct connectivity and thus the circuitry responsible remains largely unexplored. Here we investigate the role of CA3 in organizing bilateral CA1 activity by blocking synaptic transmission at CA3 terminals through the inducible transgenic expression of tetanus toxin. Although the properties of single place cells in CA1 were comparable bilaterally, we find a decrease of ripple synchronization between left and right CA1 after silencing CA3. Further, during both exploration and rest, CA1 neuronal ensemble activity is less coordinated across hemispheres. This included degradation of the replay of previously explored spatial paths in CA1 during rest, consistent with the idea that CA3 bilateral projections integrate activity between left and right hemispheres and orchestrate bilateral hippocampal coding.


Subject(s)
CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Functional Laterality/physiology , Animals , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/metabolism , Excitatory Postsynaptic Potentials/physiology , Mice , Neural Pathways/physiology , Place Cells/physiology , Rest/physiology , Synaptic Transmission/genetics , Tetanus Toxin/genetics , Wakefulness/physiology
14.
Curr Biol ; 29(5): R158-R160, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30836085

ABSTRACT

Our memories are stored as sequences of events and places. New research suggests that this temporal organization of information is absent in young animals but emerges, in parallel with memory itself, across development.


Subject(s)
Hippocampus , Memory , Animals , Temporal Lobe , Time
15.
Neuron ; 102(5): 929-943.e8, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31076275

ABSTRACT

Neuronal and synaptic loss is characteristic in many neurodegenerative diseases, such as frontotemporal dementia and Alzheimer's disease. Recently, we showed that inducing gamma oscillations with visual stimulation (gamma entrainment using sensory stimuli, or GENUS) reduced amyloid plaques and phosphorylated tau in multiple mouse models. Whether GENUS can affect neurodegeneration or cognitive performance remains unknown. Here, we demonstrate that GENUS can entrain gamma oscillations in the visual cortex, hippocampus, and prefrontal cortex in Tau P301S and CK-p25 mouse models of neurodegeneration. Tau P301S and CK-p25 mice subjected to chronic, daily GENUS from the early stages of neurodegeneration showed a preservation of neuronal and synaptic density across multiple brain areas and modified cognitive performance. Our transcriptomic and phosphoproteomic data suggest that chronic GENUS shifts neurons to a less degenerative state, improving synaptic function, enhancing neuroprotective factors, and reducing DNA damage in neurons while also reducing inflammatory response in microglia.


Subject(s)
Gamma Rhythm/physiology , Hippocampus/physiopathology , Neurodegenerative Diseases/physiopathology , Neurons/pathology , Neuroprotection/physiology , Photic Stimulation/methods , Prefrontal Cortex/physiopathology , Visual Cortex/physiopathology , Animals , DNA Damage , Disease Models, Animal , Gene Expression Profiling , Hippocampus/metabolism , Hippocampus/pathology , Inflammation , Mice , Microglia/immunology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurons/metabolism , Phosphoproteins/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Proteomics , Spatial Learning/physiology , Spatial Memory/physiology , Synapses/metabolism , Synapses/pathology , Visual Cortex/metabolism , Visual Cortex/pathology
16.
Eur J Neurosci ; 28(8): 1603-16, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18973579

ABSTRACT

Very fast oscillations (VFO; > 75 Hz) occur transiently in vivo, in the cerebellum of mice genetically modified to model Angelman syndrome, and in a mouse model of fetal alcohol syndrome. We recently reported VFO in slices of mouse cerebellar cortex (Crus I and II of ansiform and paramedian lobules), either in association with gamma oscillations (approximately 40 Hz, evoked by nicotine) or in isolation [evoked by nicotine in combination with gamma-aminobutyric acid (GABA)(A) receptor blockade]. The experimental data suggest a role for electrical coupling between Purkinje cells (blockade of VFO by drugs reducing gap junction conductance and spikelets in some Purkinje cells); and the data suggest the specific involvement of Purkinje cell axons (because of field oscillation maxima in the granular layer). We show here that a detailed network model (1000 multicompartment Purkinje cells) replicates the experimental data when gap junctions are located on the proximal axons of Purkinje cells, provided sufficient spontaneous firing is present. Unlike other VFO models, most somatic spikelets do not correspond to axonal spikes in the parent axon, but reflect spikes in electrically coupled axons. The model predicts gating of VFO frequency by g(Na) inactivation, and experiments prolonging this inactivation time constant, with beta-pompilidotoxin, are consistent with this prediction. The model also predicts that cerebellar VFO can be explained as an electrically coupled system of axons that are not intrinsic oscillators: the electrically uncoupled cells do not individually oscillate (in the model) and axonal firing rates are much lower in the uncoupled state than in the coupled state.


Subject(s)
Axons/physiology , Biological Clocks/physiology , Cerebellar Cortex/physiology , Electrical Synapses/physiology , Purkinje Cells/physiology , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Cerebellar Cortex/cytology , Computer Simulation , Male , Mice , Mice, Inbred C57BL , Models, Neurological , Neural Conduction/physiology , Neurotoxins/pharmacology , Organ Culture Techniques , Purkinje Cells/cytology , Reaction Time/physiology , Time Factors
17.
Nat Neurosci ; 21(7): 996-1003, 2018 07.
Article in English | MEDLINE | ID: mdl-29867081

ABSTRACT

An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.


Subject(s)
Hippocampus/physiopathology , Memory Disorders/genetics , Memory, Short-Term/physiology , NAV1.2 Voltage-Gated Sodium Channel/genetics , Spatial Memory/physiology , Action Potentials/physiology , Animals , Behavior, Animal/physiology , Heterozygote , Male , Memory Disorders/physiopathology , Mice , Mice, Knockout , Neural Pathways/physiopathology , Neurons/physiology , Sleep/physiology
18.
Neuron ; 97(4): 806-822.e10, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29429934

ABSTRACT

Human autoantibodies to contactin-associated protein-like 2 (CASPR2) are often associated with neuropathic pain, and CASPR2 mutations have been linked to autism spectrum disorders, in which sensory dysfunction is increasingly recognized. Human CASPR2 autoantibodies, when injected into mice, were peripherally restricted and resulted in mechanical pain-related hypersensitivity in the absence of neural injury. We therefore investigated the mechanism by which CASPR2 modulates nociceptive function. Mice lacking CASPR2 (Cntnap2-/-) demonstrated enhanced pain-related hypersensitivity to noxious mechanical stimuli, heat, and algogens. Both primary afferent excitability and subsequent nociceptive transmission within the dorsal horn were increased in Cntnap2-/- mice. Either immune or genetic-mediated ablation of CASPR2 enhanced the excitability of DRG neurons in a cell-autonomous fashion through regulation of Kv1 channel expression at the soma membrane. This is the first example of passive transfer of an autoimmune peripheral neuropathic pain disorder and demonstrates that CASPR2 has a key role in regulating cell-intrinsic dorsal root ganglion (DRG) neuron excitability.


Subject(s)
Ganglia, Spinal/physiopathology , Immunoglobulin G/administration & dosage , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Nociceptive Pain/immunology , Nociceptive Pain/physiopathology , Sensory Receptor Cells/physiology , Animals , Cells, Cultured , Female , Humans , Immunization, Passive , Male , Mechanotransduction, Cellular , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/immunology , Posterior Horn Cells/physiology , Shaker Superfamily of Potassium Channels/physiology
19.
Neuron ; 94(3): 642-655.e9, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28472661

ABSTRACT

Hippocampal CA2 pyramidal cells project into both the neighboring CA1 and CA3 subfields, leaving them well positioned to influence network physiology and information processing for memory and space. While recent work has suggested unique roles for CA2, including encoding position during immobility and generating ripple oscillations, an interventional examination of the integrative functions of these connections has yet to be reported. Here we demonstrate that CA2 recruits feedforward inhibition in CA3 and that chronic genetically engineered shutdown of CA2-pyramidal-cell synaptic transmission consequently results in increased excitability of the recurrent CA3 network. In behaving mice, this led to spatially triggered episodes of network-wide hyperexcitability during exploration accompanied by the emergence of high-frequency discharges during rest. These findings reveal CA2 as a regulator of network processing in hippocampus and suggest that CA2-mediated inhibition in CA3 plays a key role in establishing the dynamic excitatory and inhibitory balance required for proper network function.


Subject(s)
CA2 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Nerve Net/physiology , Neural Inhibition/physiology , Pyramidal Cells/physiology , Synaptic Transmission/physiology , Theta Rhythm/physiology , Animals , CA2 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , Hippocampus/physiology , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Mice , Tetanus Toxin/genetics , Tetanus Toxin/metabolism
20.
Nat Neurosci ; 19(7): 945-51, 2016 07.
Article in English | MEDLINE | ID: mdl-27239937

ABSTRACT

In addition to the place-cell rate code, hippocampal area CA1 employs a temporal code, both on the single-cell and ensemble level, to accurately represent space. Although there is clear evidence that this precise spike timing is organized by theta and gamma oscillations that are present in hippocampus, the circuit mechanisms underlying these temporal codes remain poorly understood. We found that the loss of CA3 input abolished temporal coding at the ensemble level in CA1 despite the persistence of both rate and temporal coding in individual neurons. Moreover, low gamma oscillations were present in CA1 despite the absence of CA3 input, but spikes associated with these periods carried significantly reduced spatial information. Our findings dissociate temporal coding at the single-cell (phase precession) and population (theta sequences) levels and suggest that CA3 input is crucial for temporal coordination of the CA1 ensemble code for space.


Subject(s)
Action Potentials/physiology , Behavior, Animal/physiology , CA1 Region, Hippocampal/physiology , CA3 Region, Hippocampal/physiology , Theta Rhythm/physiology , Animals , Male , Mice, Transgenic , Models, Neurological , Pyramidal Cells/physiology
SELECTION OF CITATIONS
SEARCH DETAIL