Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 109(12): 2095-2100, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459976

ABSTRACT

The genotyping of millions of human samples has made it possible to evaluate variants across the human genome for their possible association with risks for numerous diseases and other traits by using genome-wide association studies (GWASs). The associations between phenotype and genotype found in GWASs make possible the construction of polygenic scores (PGSs), which aim to predict a trait or disease outcome in an individual on the basis of their genotype (in the disease case, the term polygenic risk score [PRS] is often used). PGSs have shown promise for studying the biology of complex traits and as a tool for evaluating individual disease risks in clinical settings. Although the quantity and quality of data to compute PGSs are increasing, challenges remain in the technical aspects of developing PGSs and in the ethical and social issues that might arise from their use. This ASHG Guidance emphasizes three major themes for researchers working with or interested in the application of PGSs in their own research: (1) developing diverse research cohorts; (2) fostering robustness in the development, application, and interpretation of PGSs; and (3) improving the communication of PGS results and their implications to broad audiences.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Genetic Research , Genotype , Phenotype
2.
J Med Genet ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38806232

ABSTRACT

BACKGROUND: Variant classification in the setting of germline genetic testing is necessary for patients and their families to receive proper care. Variants are classified as pathogenic (P), likely pathogenic (LP), uncertain significance (VUS), likely benign (LB) and benign (B) using the standards and guidelines recommended by the American College of Medical Genetics and the Association for Molecular Pathology, with modifications for specific genes. As the literature continues to rapidly expand, and evidence continues to accumulate, prior classifications can be updated accordingly. In this study, we aim to characterise variant reclassifications in Ontario. METHODS: DNA samples from patients seen at hereditary cancer clinics in Ontario from January 2012 to April 2022 were submitted for testing. Patients met provincial eligibility criteria for testing for hereditary cancer syndromes or polycystic kidney disease. Reclassification events were determined to be within their broader category of significance (B to LB or vice versa, or P to LP or vice versa) or outside of their broader category as significance (ie, significant reclassifications from B/LB or VUS or P/LP, from P/LP to VUS or B/LB, or from VUS to any other category). RESULTS: Of the 8075 unique variants included in this study, 23.7% (1912) of variants were reassessed, and 7.2% (578) of variants were reclassified. Of these, 351 (60.7%) variants were reclassified outside of their broader category of significance. Overall, the final classification was significantly different for 336 (58.1%) variants. Importantly, most reclassified variants were downgraded to a more benign classification (n=245; 72.9%). Of note, most reclassified VUS was downgraded to B/LB (n=233; 84.7%). CONCLUSIONS: The likelihood for reclassification of variants on reassessment is high. Most reclassified variants were downgraded to a more benign classification. Our findings highlight the importance of periodic variant reassessment to ensure timely and appropriate care for patients and their families.

3.
Prenat Diagn ; 44(4): 443-453, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279846

ABSTRACT

OBJECTIVE: Chromosomal microarray (CMA), while considered the gold standard for detecting copy number variants (CNVs) in prenatal diagnostics, has its limitations, including the necessity to replace aging microarray equipment, low throughput, a static design, and an inefficient multi-day workflow. This study evaluates the feasibility of low-pass genome sequencing (LP-GS) as a potential replacement for CMA in prenatal diagnostics. METHODS: We comprehensively compared LP-GS at 10x and 5x average depths with CMA in a prenatal laboratory. We examined parameters, including concordance, sensitivity, specificity, workflow efficiency, and cost-effectiveness. RESULTS: We found a high degree of agreement between LP-GS and CMA for detecting CNVs and absence of heterozygosity. Furthermore, compared to CMA, LP-GS increased workflow efficiency and proved to be cost-neutral at 10x and cost-effective at 5x. CONCLUSION: Our study suggests that LP-GS is a promising alternative to CMA in prenatal diagnostics, offering advantages, including a more efficient workflow and scalability for larger testing volumes. Importantly, for clinical laboratories that have adopted next-generation sequencing in a separate capacity, LP-GS facilitates a unified NGS-centric approach, enabling workflow consolidation. By offering a single, streamlined platform for detecting a broad range of genetic variants, LP-GS may represent a critical step toward enhancing the diagnostic capabilities of prenatal laboratories.


Subject(s)
DNA Copy Number Variations , Prenatal Diagnosis , Pregnancy , Female , Humans , Chromosome Mapping , Microarray Analysis
4.
J Med Genet ; 60(8): 733-739, 2023 08.
Article in English | MEDLINE | ID: mdl-37217257

ABSTRACT

Secondary findings (SFs) identified through genomic sequencing (GS) can offer a wide range of health benefits to patients. Resource and capacity constraints pose a challenge to their clinical management; therefore, clinical workflows are needed to optimise the health benefits of SFs. In this paper, we describe a model we created for the return and referral of all clinically significant SFs, beyond medically actionable results, from GS. As part of a randomised controlled trial evaluating the outcomes and costs of disclosing all clinically significant SFs from GS, we consulted genetics and primary care experts to determine a feasible workflow to manage SFs. Consensus was sought to determine appropriate clinical recommendations for each category of SF and which clinician specialist would provide follow-up care. We developed a communication and referral plan for each category of SFs. This involved referrals to specialised clinics, such as an Adult Genetics clinic, for highly penetrant medically actionable findings. Common and non-urgent SFs, such as pharmacogenomics and carrier status results for non-family planning participants, were directed back to the family physician (FP). SF results and recommendations were communicated directly to participants to respect autonomy and to their FPs to support follow-up of SFs. We describe a model for the return and referral of all clinically significant SFs to facilitate the utility of GS and promote the health benefits of SFs. This may serve as a model for others returning GS results transitioning participants from research to clinical settings.


Subject(s)
Genomics , Referral and Consultation , Adult , Humans , Costs and Cost Analysis , Consensus , Randomized Controlled Trials as Topic
5.
Kidney Int ; 104(5): 995-1007, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37598857

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Humans , Infant, Newborn , Mice , Carrier Proteins/metabolism , Cilia/pathology , Kidney/metabolism , Mutation , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , Polycystic Kidney Diseases/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Serine/genetics , Serine/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism
6.
Hum Genet ; 142(4): 553-562, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36943453

ABSTRACT

We aimed to describe patient preferences for a broad range of secondary findings (SF) from genomic sequencing (GS) and factors driving preferences. We assessed preference data within a trial of the Genomics ADvISER, (SF decision aid) among adult cancer patients. Participants could choose from five categories of SF: (1) medically actionable; (2) polygenic risks; (3) rare diseases; (4) early-onset neurological diseases; and (5) carrier status. We analyzed preferences using descriptive statistics and drivers of preferences using multivariable logistic regression models. The 133 participants were predominantly European (74%) or East Asian or mixed ancestry (13%), female (90%), and aged > 50 years old (60%). The majority chose to receive SF. 97% (129/133) chose actionable findings with 36% (48/133) choosing all 5 categories. Despite the lack of medical actionability, participants were interested in receiving SF of polygenic risks (74%), carrier status (75%), rare diseases (59%), and early-onset neurologic diseases (53%). Older participants were more likely to be interested in receiving results for early-onset neurological diseases, while those exhibiting lower decisional conflict were more likely to select all categories. Our results highlight a disconnect between cancer patient preferences and professional guidelines on SF, such as ACMG's recommendations to only return medically actionable secondary findings. In addition to clinical evidence, future guidelines should incorporate patient preferences.


Subject(s)
Neoplasms , Patient Preference , Adult , Humans , Female , Middle Aged , Motivation , Rare Diseases , Genomics , Neoplasms/genetics
7.
Hum Genet ; 142(2): 181-192, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36331656

ABSTRACT

Rapid advancements of genome sequencing (GS) technologies have enhanced our understanding of the relationship between genes and human disease. To incorporate genomic information into the practice of medicine, new processes for the analysis, reporting, and communication of GS data are needed. Blood samples were collected from adults with a PCR-confirmed SARS-CoV-2 (COVID-19) diagnosis (target N = 1500). GS was performed. Data were filtered and analyzed using custom pipelines and gene panels. We developed unique patient-facing materials, including an online intake survey, group counseling presentation, and consultation letters in addition to a comprehensive GS report. The final report includes results generated from GS data: (1) monogenic disease risks; (2) carrier status; (3) pharmacogenomic variants; (4) polygenic risk scores for common conditions; (5) HLA genotype; (6) genetic ancestry; (7) blood group; and, (8) COVID-19 viral lineage. Participants complete pre-test genetic counseling and confirm preferences for secondary findings before receiving results. Counseling and referrals are initiated for clinically significant findings. We developed a genetic counseling, reporting, and return of results framework that integrates GS information across multiple areas of human health, presenting possibilities for the clinical application of comprehensive GS data in healthy individuals.


Subject(s)
COVID-19 , Genetic Counseling , Adult , Humans , COVID-19/epidemiology , COVID-19/genetics , SARS-CoV-2/genetics , Genomics/methods , Genotype
8.
Genet Med ; 25(12): 100960, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37577963

ABSTRACT

PURPOSE: We sought to explore patient-reported utility of all types of cancer results from genomic sequencing (GS). METHODS: Qualitative study, using semi-structured interviews with patients who underwent GS within a trial. Thematic analysis employing constant comparison was used. Two coders coded transcripts, with use of a third coder to resolve conflicts. RESULTS: 25 patients participated: female (22), >50 years (18), European (12), Ashkenazi Jewish (5), Middle Eastern (3), or other ethnicity (5), with breast cancer history (20). Patients' perceptions of the utility of cancer GS results hinged on whether they triggered clinical action. For example, when patients were enrolled into high-risk breast cancer surveillance programs for low/moderate risk breast cancer genes, they perceived the results to be very "useful" and of moderate-high utility. In contrast, patients receiving low/moderate risk or primary variants of uncertain significance results without clinical action perceived results as "concerning," leading to harms, such as hypervigilance about cancer symptoms. Overall, having supportive relatives or providers enhanced perceptions of utility. CONCLUSION: Patients' perceptions of cancer GS results hinged on whether they triggered clinical management. Consequently, patients who received results without clinical action became hypervigilant, experiencing harms. Our findings call for a need to develop practice interventions to support patients with cancer undergoing GS.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Confidentiality , Genomics , Qualitative Research , Male , Middle Aged , Clinical Trials as Topic
9.
Genet Med ; 25(5): 100819, 2023 05.
Article in English | MEDLINE | ID: mdl-36919843

ABSTRACT

PURPOSE: Genomic sequencing can generate complex results, including variants of uncertain significance (VUS). In general, VUS should not inform clinical decision-making. This study aimed to assess the public's expected management of VUS. METHODS: An online, hypothetical survey was conducted among members of the Canadian public preceded by an educational video. Participants were randomized to 1 of 2 arms, VUS or pathogenic variant in a colorectal cancer gene, and asked which types of health services they expected to use for this result. Expected health service use was compared between randomization arms, and associations between participants' sociodemographic characteristics, attitudes, and medical history were explored. RESULTS: Among 1003 respondents (completion rate 60%), more participants expected to use each type of health service for a pathogenic variant than for a VUS. However, a considerable proportion of participants expected to request monitoring (73.4%) and consult health care providers (60.9%) for a VUS. There was evidence to support associations between expectation to use health services for a VUS with family history of genetic disease, family history of cancer, education, and attitudes toward health care and technology. CONCLUSION: Many participants expected to use health services for a VUS in a colorectal cancer predisposition gene, suggesting a potential disconnect between patients' expectations for VUS management and guideline-recommended care.


Subject(s)
Colorectal Neoplasms , Genetic Testing , Humans , Genetic Testing/methods , Canada/epidemiology , Surveys and Questionnaires , Health Knowledge, Attitudes, Practice , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Genetic Predisposition to Disease
10.
J Med Genet ; 59(6): 571-578, 2022 06.
Article in English | MEDLINE | ID: mdl-33875564

ABSTRACT

BACKGROUND: This study aimed to identify and resolve discordant variant interpretations across clinical molecular genetic laboratories through the Canadian Open Genetics Repository (COGR), an online collaborative effort for variant sharing and interpretation. METHODS: Laboratories uploaded variant data to the Franklin Genoox platform. Reports were issued to each laboratory, summarising variants where conflicting classifications with another laboratory were noted. Laboratories could then reassess variants to resolve discordances. Discordance was calculated using a five-tier model (pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), likely benign (LB), benign (B)), a three-tier model (LP/P are positive, VUS are inconclusive, LB/B are negative) and a two-tier model (LP/P are clinically actionable, VUS/LB/B are not). We compared the COGR classifications to automated classifications generated by Franklin. RESULTS: Twelve laboratories submitted classifications for 44 510 unique variants. 2419 variants (5.4%) were classified by two or more laboratories. From baseline to after reassessment, the number of discordant variants decreased from 833 (34.4% of variants reported by two or more laboratories) to 723 (29.9%) based on the five-tier model, 403 (16.7%) to 279 (11.5%) based on the three-tier model and 77 (3.2%) to 37 (1.5%) based on the two-tier model. Compared with the COGR classification, the automated Franklin classifications had 94.5% sensitivity and 96.6% specificity for identifying actionable (P or LP) variants. CONCLUSIONS: The COGR provides a standardised mechanism for laboratories to identify discordant variant interpretations and reduce discordance in genetic test result delivery. Such quality assurance programmes are important as genetic testing is implemented more widely in clinical care.


Subject(s)
Genetic Variation , Laboratories , Canada , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Information Dissemination/methods
11.
Int J Technol Assess Health Care ; 39(1): e67, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37929295

ABSTRACT

OBJECTIVES: Health technology assessment (HTA) traditionally informs decision making for single health technologies, which could lead to ill-informed decisions, suboptimal care, and system inefficiencies. We explored opportunities for conceptualizing the decision space in HTA as a disease management question versus an intervention management question. METHODS: Semistructured interviews were conducted between April 2022 and October 2022 with purposefully selected individuals from national and provincial HTA agencies and related organizations in Canada. We conducted manual line by line coding of data informed by our interview guide and sensitizing concepts from the literature. One author coded the data, and findings were independently verified by a second author who coded a subset of transcripts. RESULTS: Twenty-four invitations were distributed, and eighteen individuals agreed to participate. A disease management approach to HTA was differentiated from traditional approaches as being disease-based, multi-interventional, and dynamic. There was general support for an explicit care pathway approach to HTA by informing discussions around patient choice and suboptimal care, creating a space where decision makers can collaborate on shared objectives, and in setting up a platform for open dialogue about managing high-cost and high-severity diseases. There are opportunities for a care pathway approach to be implemented that build on the strengths of the existing HTA system in Canada. CONCLUSIONS: A disease management approach may enhance the impact of HTA by supporting dynamic decision making that could better inform a proactive, resilient, and sustainable healthcare system in Canada.


Subject(s)
Systems Analysis , Technology Assessment, Biomedical , Humans , Canada
12.
Genes Chromosomes Cancer ; 61(6): 356-381, 2022 06.
Article in English | MEDLINE | ID: mdl-35436018

ABSTRACT

Molecular testing for hereditary cancers has rapidly advanced over the past two decades. Next-generation sequencing has been widely adopted, which has made molecular testing increasingly accessible, and large gene panels are now routinely used in clinical care. Effectively using molecular testing as a tool for the management of patients with hereditary cancer involves understanding various basic principles. In this article, we provide an overview of general principles for molecular germline testing for hereditary cancer syndromes. We overview hereditary cancer etiology, clinical indications for molecular testing, test methodologies and limitations, interpretation and reporting of test results, the evolving nature of evidence on gene-disease relationships and penetrance, and resources related to the clinical management of hereditary cancer syndromes.


Subject(s)
Genetic Testing , Neoplastic Syndromes, Hereditary , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Molecular Diagnostic Techniques , Neoplastic Syndromes, Hereditary/diagnosis , Neoplastic Syndromes, Hereditary/genetics
13.
Hum Genet ; 141(12): 1875-1885, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35739291

ABSTRACT

Genomic sequencing (GS) can reveal secondary findings (SFs), findings unrelated to the reason for testing, that can be overwhelming to both patients and providers. An effective approach for communicating all clinically significant primary and secondary GS results is needed to effectively manage this large volume of results. The aim of this study was to develop a comprehensive approach to communicate all clinically significant primary and SF results. A genomic test report with accompanying patient and provider letters were developed in three phases: review of current clinical reporting practices, consulting with genetic and non-genetics experts, and iterative refinement through circulation to key stakeholders. The genomic test report and consultation letters present a myriad of clinically relevant GS results in distinct, tabulated sections, including primary (cancer) and secondary findings, with in-depth details of each finding generated from exome sequencing. They provide detailed variant and disease information, personal and familial risk assessments, clinical management details, and additional resources to help support providers and patients with implementing healthcare recommendations related to their GS results. The report and consultation letters represent a comprehensive approach to communicate all clinically significant SFs to patients and providers, facilitating clinical management of GS results.


Subject(s)
Genome, Human , Genomics , Humans , Genomics/methods , Exome Sequencing , Exome , Base Sequence
14.
Oncologist ; 27(5): e393-e401, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35385106

ABSTRACT

BACKGROUND: We explored health professionals' views on the utility of circulating tumor DNA (ctDNA) testing in hereditary cancer syndrome (HCS) management. MATERIALS AND METHODS: A qualitative interpretive description study was conducted, using semi-structured interviews with professionals across Canada. Thematic analysis employing constant comparison was used for analysis. 2 investigators coded each transcript. Differences were reconciled through discussion and the codebook was modified as new codes and themes emerged from the data. RESULTS: Thirty-five professionals participated and included genetic counselors (n = 12), geneticists (n = 9), oncologists (n = 4), family doctors (n = 3), lab directors and scientists (n = 3), a health-system decision maker, a surgeon, a pathologist, and a nurse. Professionals described ctDNA as "transformative" and a "game-changer". However, they were divided on its use in HCS management, with some being optimistic (optimists) while others were hesitant (pessimists). Differences were driven by views on 3 factors: (1) clinical utility, (2) ctDNA's role in cancer screening, and (3) ctDNA's invasiveness. Optimists anticipated ctDNA testing would have clinical utility for HCS patients, its role would be akin to a diagnostic test and would be less invasive than standard screening (eg imaging). Pessimistic participants felt ctDNA testing would add limited utility; it would effectively be another screening test in the pathway, likely triggering additional investigations downstream, thereby increasing invasiveness. CONCLUSIONS: Providers anticipated ctDNA testing will transform early cancer detection for HCS families. However, the contrasting positions on ctDNA's role in the care pathway raise potential practice variations, highlighting a need to develop evidence to support clinical implementation and guidelines to standardize adoption.


Subject(s)
Circulating Tumor DNA , Neoplastic Syndromes, Hereditary , Circulating Tumor DNA/genetics , Early Detection of Cancer/methods , Health Personnel , Humans , Qualitative Research
15.
Genet Med ; 24(9): 1888-1898, 2022 09.
Article in English | MEDLINE | ID: mdl-35612591

ABSTRACT

PURPOSE: Emerging genetic tests such as genomic sequencing (GS) can generate a broad range of benefits, but funding criteria only prioritize diagnosis and clinical management. There is limited evidence on all types of benefits obtained from GS in practice. We aimed to explore real-world experiences of Canadian clinicians across specialties on the full range of benefits obtained from the results from GS. METHODS: We conducted a qualitative study using semistructured interviews with Canadian clinicians. Transcripts were thematically analyzed using constant comparison. RESULTS: In total, 25 clinicians participated, including 12 geneticists, 7 genetic counselors, 4 oncologists, 1 neurologist, and 1 family physician. Although diagnoses and management were the most valued benefits of GS, clinicians also prioritized nontraditional utility, such as access to community supports. However, clinicians felt "restricted" by funding bodies, which only approved funding when GS would inform diagnoses and management. Consequently, clinicians sought ways to "cheat the system" to access GS (eg, research testing) but acknowledged workarounds were burdensome, drove inequity, and undermined patient care. CONCLUSION: Current governance structures undervalue real-world benefits of GS leading clinicians to adopt workarounds, which jeopardize patient care. These results support calls for the expansion of the definition of clinical utility and research to quantify the additional benefits.


Subject(s)
Counselors , Genetic Testing , Canada , Genomics , Humans , Qualitative Research
16.
J Med Genet ; 58(4): 275-283, 2021 04.
Article in English | MEDLINE | ID: mdl-32581083

ABSTRACT

BACKGROUND: Exome and genome sequencing have been demonstrated to increase diagnostic yield in paediatric populations, improving treatment options and providing risk information for relatives. There are limited studies examining the clinical utility of these tests in adults, who currently have limited access to this technology. METHODS: Patients from adult and cancer genetics clinics across Toronto, Ontario, Canada were recruited into a prospective cohort study evaluating the diagnostic utility of exome and genome sequencing in adults. Eligible patients were ≥18 years of age and suspected of having a hereditary disorder but had received previous uninformative genetic test results. In total, we examined the diagnostic utility of exome and genome sequencing in 47 probands and 34 of their relatives who consented to participate and underwent exome or genome sequencing. RESULTS: Overall, 17% (8/47) of probands had a pathogenic or likely pathogenic variant identified in a gene associated with their primary indication for testing. The diagnostic yield for patients with a cancer history was similar to the yield for patients with a non-cancer history (4/18 (22%) vs 4/29 (14%)). An additional 24 probands (51%) had an inconclusive result. Secondary findings were identified in 10 patients (21%); three had medically actionable results. CONCLUSIONS: This study lends evidence to the diagnostic utility of exome or genome sequencing in an undiagnosed adult population. The significant increase in diagnostic yield warrants the use of this technology. The identification and communication of secondary findings may provide added value when using this testing modality as a first-line test.


Subject(s)
Exome Sequencing , Genetic Predisposition to Disease , Undiagnosed Diseases/diagnosis , Whole Genome Sequencing , Adolescent , Adult , Aged , Canada/epidemiology , Exome/genetics , Female , Genetic Testing/trends , Genome, Human/genetics , Humans , Male , Middle Aged , Mutation/genetics , Undiagnosed Diseases/epidemiology , Undiagnosed Diseases/genetics , Young Adult
17.
Hum Genet ; 140(10): 1403-1416, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34368901

ABSTRACT

Exome sequencing and genome sequencing have the potential to improve clinical utility for patients undergoing genetic investigations. However, evidence of clinical utility is limited to pediatric populations; we aimed to fill this gap by conducting a systematic review of the literature on the clinical utility of exome/genome sequencing across disease indications in pediatric and adult populations. MEDLINE, EMBASE and Cochrane Library were searched between 2016 and 2020. Quantitative studies evaluating diagnostic yield were included; other measures of clinical utility such as changes to clinical management were documented if reported. Two reviewers screened, extracted data, and appraised risk of bias. Fifty studies met our inclusion criteria. All studies reported diagnostic yield, which ranged from 3 to 70%, with higher range of yields reported for neurological indications and acute illness ranging from 22 to 68% and 37-70%, respectively. Diagnoses triggered a range of clinical management changes including surveillance, reproductive-risk counseling, and identifying at-risk relatives in 4-100% of patients, with higher frequencies reported for acute illness ranging from 67 to 95%. The frequency of variants of uncertain significance ranged from 5 to 85% across studies with a potential trend of decreasing frequency over time and higher rates identified in patients of non-European ancestry. This review provides evidence for a higher range of diagnostic yield of exome/genome sequencing compared to standard genetic tests, particularly in neurological and acute indications. However, we identified significant heterogeneity in study procedures and outcomes, precluding a meaningful meta-analysis and certainty in the evidence available for decision-making. Future research that incorporates a comprehensive and consistent approach in capturing clinical utility of exome/genome sequencing across broader ancestral groups is necessary to improve diagnostic accuracy and yield and allow for analysis of trends over time.Prospero registration CRD42019094101.


Subject(s)
Abnormalities, Multiple/genetics , Exome Sequencing , Genome, Human , Nervous System Diseases/genetics , Genetic Variation , Humans , Sequence Analysis, Protein
18.
Hum Genet ; 140(3): 493-504, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32892247

ABSTRACT

Genomic sequencing advances have increased the potential to identify secondary findings (SFs). Current guidelines recommend the analysis of 59 medically actionable genes; however, patient preferences indicate interest in learning a broader group of SFs. We aimed to develop an analytical pipeline for the efficient analysis and return of all clinically significant SFs. We developed a pipeline consisting of comprehensive gene lists for five categories of SFs and filtration parameters for prioritization of variants in each category. We applied the pipeline to 42 exomes to assess feasibility and efficiency. Comprehensive lists of clinically significant SF genes were curated for each category: (1) 90 medically actionable genes and 28 pharmacogenomic variants; (2) 17 common disease risk variants; (3) 3166 Mendelian disease genes, (4) 7 early onset neurodegenerative disorder genes; (5) 688 carrier status results. Analysis of 42 exomes using our pipeline resulted in a significant decrease (> 98%) in variants compared to the raw analysis (13,036.56 ± 59.72 raw variants/exome vs 161.32 ± 7.68 filtered variants/exome), and aided in time and costs savings for the overall analysis process. Our pipeline represents a critical step in overcoming the analytic challenge associated with returning all clinically relevant SFs to allow for its routine implementation in clinical practice.


Subject(s)
Exome Sequencing/methods , Genetic Carrier Screening , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Pharmacogenetics , Polymorphism, Single Nucleotide
19.
Hum Genet ; 140(12): 1695-1708, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537903

ABSTRACT

Variants of uncertain significance (VUS) are frequently reclassified but recontacting patients with updated results poses significant resource challenges. We aimed to characterize public and patient preferences for being recontacted with updated results. A discrete choice experiment (DCE) was administered to representative samples of the Canadian public and cancer patients. DCE attributes were uncertainty, cost, recontact modality, choice of results, and actionability. DCE data were analyzed using a mixed logit model and by calculating willingness to pay (WTP) for types of recontact. Qualitative interviews exploring recontact preferences were analyzed thematically. DCE response rate was 60% (n = 1003, 50% cancer patient participants). 31 participants were interviewed (11 cancer patients). Interviews revealed that participants expected to be recontacted. Quantitatively, preferences for how to be recontacted varied based on certainty of results. For certain results, WTP was highest for being recontacted by a doctor with updates ($1075, 95% CI: $845, $1305) and for contacting a doctor to request updates ($1038, 95% CI: $820, $1256). For VUS results, WTP was highest for an online database ($1735, 95% CI: $1224, $2247) and for contacting a doctor ($1705, 95% CI: $1102, $2307). Qualitative data revealed that preferences for provider-mediated recontact were influenced by trust in healthcare providers. Preferences for a database were influenced by lack of trust in providers and desire for control. Patients and public participants support an online database (e.g. patient portal) to recontact for VUS, improving feasibility, and provider-mediated recontact for certain results, consistent with usual care.


Subject(s)
Duty to Recontact , Genetic Testing , Patient Preference , Adult , Choice Behavior , Female , Health Expenditures , Humans , Male , Middle Aged , Patient Portals , Public Opinion , Surveys and Questionnaires
20.
Genet Med ; 23(1): 22-33, 2021 01.
Article in English | MEDLINE | ID: mdl-32921787

ABSTRACT

This study systematically reviewed and synthesized the literature on psychological and clinical outcomes of receiving a variant of uncertain significance (VUS) from multigene panel testing or genomic sequencing. MEDLINE and EMBASE were searched. Two reviewers screened studies and extracted data. Data were synthesized through meta-analysis and meta-aggregation. The search identified 4539 unique studies and 15 were included in the review. Patients with VUS reported higher genetic test-specific concerns on the Multidimensional Impact of Cancer Risk Assessment (MICRA) scale than patients with negative results (mean difference 3.73 [95% CI 0.80 to 6.66] P = 0.0126), and lower than patients with positive results (mean difference -7.01 [95% CI -11.31 to -2.71], P = 0.0014). Patients with VUS and patients with negative results were similarly likely to have a change in their clinical management (OR 1.41 [95% CI 0.90 to 2.21], P = 0.182), and less likely to have a change in management than patients with positive results (OR 0.09 [95% CI 0.05 to 0.19], P < 0.0001). Factors that contributed to how patients responded to their VUS included their interpretation of the result and their health-care provider's counseling and recommendations. Review findings suggest there may be a need for practice guidelines or clinical decision support tools for VUS disclosure and management.


Subject(s)
Genetic Predisposition to Disease , Genetic Testing , Chromosome Mapping , Genomics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL