Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Mol Cell Cardiol ; 165: 86-102, 2022 04.
Article in English | MEDLINE | ID: mdl-34999055

ABSTRACT

Cyclic AMP is a ubiquitous second messenger used to transduce intracellular signals from a variety of Gs-coupled receptors. Compartmentalisation of protein intermediates within the cAMP signaling pathway underpins receptor-specific responses. The cAMP effector proteins protein-kinase A and EPAC are found in complexes that also contain phosphodiesterases whose presence ensures a coordinated cellular response to receptor activation events. Popeye domain containing (POPDC) proteins are the most recent class of cAMP effectors to be identified and have crucial roles in cardiac pacemaking and conduction. We report the first observation that POPDC proteins exist in complexes with members of the PDE4 family in cardiac myocytes. We show that POPDC1 preferentially binds the PDE4A sub-family via a specificity motif in the PDE4 UCR1 region and that PDE4s bind to the Popeye domain of POPDC1 in a region known to be susceptible to a mutation that causes human disease. Using a cell-permeable disruptor peptide that displaces the POPDC1-PDE4 complex we show that PDE4 activity localized to POPDC1 modulates cycle length of spontaneous Ca2+ transients firing in intact mouse sinoatrial nodes.


Subject(s)
Cyclic AMP-Dependent Protein Kinases , Cyclic AMP , Animals , Carrier Proteins/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Mice , Phosphoric Diester Hydrolases/metabolism , Second Messenger Systems , Signal Transduction
2.
Circulation ; 142(2): 161-174, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32264695

ABSTRACT

BACKGROUND: The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac ß-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS: We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS: PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but ß-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS: Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Gene Expression , Heart Failure/etiology , Myocardium/metabolism , Ventricular Remodeling/genetics , Adrenergic beta-Agonists/pharmacology , Animals , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Disease Models, Animal , Disease Susceptibility , Genetic Therapy , Genetic Vectors/genetics , Heart Failure/diagnosis , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Function Tests , Humans , Isoproterenol/pharmacology , Mice , Mice, Transgenic , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenotype , Receptors, Adrenergic, beta/metabolism , Transduction, Genetic , Ventricular Remodeling/drug effects
3.
Am J Transplant ; 21(3): 1285-1294, 2021 03.
Article in English | MEDLINE | ID: mdl-33252201

ABSTRACT

Higher rates of severe COVID-19 have been reported in kidney transplant recipients (KTRs) compared to nontransplant patients. We aimed to determine if poorer outcomes were specifically related to chronic immunosuppression or underlying comorbidities. We used a 1:1 propensity score-matching method to compare survival and severe disease-free survival (defined as death and/or need for intensive care unit [ICU]) incidence in hospitalized KTRs and nontransplant control patients between February 26 and May 22, 2020. Patients were matched for risk factors of severe COVID-19: age, sex, body mass index, diabetes mellitus, preexisting cardiopathy, chronic lung disease, and basal renal function. We included 100 KTRs (median age [interquartile range (IQR)]) 64.7 years (55.3-73.1) in three French transplant centers. After a median follow-up of 13 days (7-30), transfer to ICU was required for 34 patients (34%) and death occurred in 26 patients (26%). Overall, 43 patients (43%) developed a severe disease during a median follow-up of 8.5 days (2-14). Propensity score matching to a large French cohort of 2017 patients hospitalized in 24 centers, revealed that survival was similar between KTRs and matched nontransplant patients with respective 30-day survival of 62.9% and 71% (p = .38) and severe disease-free 30-day survival of 50.6% and 47.5% (p = .91). These findings suggest that severity of COVID-19 in KTRs is related to their associated comorbidities and not to chronic immunosuppression.


Subject(s)
COVID-19/epidemiology , Immunocompromised Host , Kidney Transplantation , SARS-CoV-2 , Transplant Recipients , Aged , Comorbidity , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Retrospective Studies
4.
Pacing Clin Electrophysiol ; 44(1): 135-144, 2021 01.
Article in English | MEDLINE | ID: mdl-33283875

ABSTRACT

INTRODUCTION: Causes of non-response to cardiac resynchronization therapy (CRT) include mechanical dyssynchrony, myocardial scar, and suboptimal left ventricular (LV) lead location. We aimed to assess the utility of Late Iodine Enhancement Computed Tomography (LIE-CT) with image subtraction in characterizing CRT non-response. METHODS: CRT response was defined as a decrease in LV end-systolic volume > 15% at 6 months. LIE-CT was performed after 6 months, and analyzed global and segmental dyssynchrony, myocardial scar, coronary venous anatomy, and position of LV lead relative to scar and segment of latest mechanical contraction. RESULTS: We evaluated 29 patients (age 71 ± 12 years; 72% men) including 18 (62%) responders. All metrics evaluating residual dyssynchrony such as wall motion index and wall thickness index were worse in non-responders. There was no difference in presence and extent of scar between responders and non-responders. However, in non-responders, the LV lead was more often over an akinetic/dyskinetic area (72% vs. 22%, p = .007), a fibrotic area (64% vs. 8%, p = .0007), an area with myocardial thickness < 6 mm (82% vs. 22%, p = .002), and less often concordant with the region of maximal wall thickness (9% vs. 72%, p = .001). Among the 11 non-responders, eight had at least another coronary venous branch visualized by CT, including three (27%) coursing over a potentially interesting myocardial area (free of scar, with normal wall motion, and with a myocardial thickness ≥6 mm). CONCLUSION: LIE-CT with image subtraction allows a comprehensive characterization of patients after CRT and may provide clues for management of non-responders.


Subject(s)
Cardiac Resynchronization Therapy Devices , Tomography, X-Ray Computed , Treatment Failure , Aged , Cardiac Resynchronization Therapy , Contrast Media , Coronary Angiography , Echocardiography , Female , Humans , Male , Middle Aged , Radiographic Image Interpretation, Computer-Assisted , Subtraction Technique
5.
Eur Heart J ; 41(32): 3058-3068, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32656565

ABSTRACT

AIMS: While pulmonary embolism (PE) appears to be a major issue in COVID-19, data remain sparse. We aimed to describe the risk factors and baseline characteristics of patients with PE in a cohort of COVID-19 patients. METHODS AND RESULTS: In a retrospective multicentre observational study, we included consecutive patients hospitalized for COVID-19. Patients without computed tomography pulmonary angiography (CTPA)-proven PE diagnosis and those who were directly admitted to an intensive care unit (ICU) were excluded. Among 1240 patients (58.1% men, mean age 64 ± 17 years), 103 (8.3%) patients had PE confirmed by CTPA. The ICU transfer and mechanical ventilation were significantly higher in the PE group (for both P < 0.001). In an univariable analysis, traditional venous thrombo-embolic risk factors were not associated with PE (P > 0.05), while patients under therapeutic dose anticoagulation before hospitalization or prophylactic dose anticoagulation introduced during hospitalization had lower PE occurrence [odds ratio (OR) 0.40, 95% confidence interval (CI) 0.14-0.91, P = 0.04; and OR 0.11, 95% CI 0.06-0.18, P < 0.001, respectively]. In a multivariable analysis, the following variables, also statistically significant in univariable analysis, were associated with PE: male gender (OR 1.03, 95% CI 1.003-1.069, P = 0.04), anticoagulation with a prophylactic dose (OR 0.83, 95% CI 0.79-0.85, P < 0.001) or a therapeutic dose (OR 0.87, 95% CI 0.82-0.92, P < 0.001), C-reactive protein (OR 1.03, 95% CI 1.01-1.04, P = 0.001), and time from symptom onset to hospitalization (OR 1.02, 95% CI 1.006-1.038, P = 0.002). CONCLUSION: PE risk factors in the COVID-19 context do not include traditional thrombo-embolic risk factors but rather independent clinical and biological findings at admission, including a major contribution to inflammation.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Hospitalization/trends , Pandemics , Pneumonia, Viral/complications , Pulmonary Embolism/etiology , COVID-19 , Computed Tomography Angiography/methods , Coronavirus Infections/epidemiology , Female , France/epidemiology , Humans , Incidence , Male , Middle Aged , Pneumonia, Viral/epidemiology , Pulmonary Embolism/diagnosis , Pulmonary Embolism/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2 , Survival Rate/trends
6.
Basic Res Cardiol ; 115(5): 51, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32699940

ABSTRACT

The concentration of fibroblast growth factor 23 (FGF23) rises progressively in renal failure (RF). High FGF23 concentrations have been consistently associated with adverse cardiovascular outcomes or death, in chronic kidney disease (CKD), heart failure or liver cirrhosis. We identified the mechanisms whereby high concentrations of FGF23 can increase the risk of death of cardiovascular origin. We studied the effects of FGF23 and Klotho in adult rat ventricular cardiomyocytes (ARVMs) and on the heart of mice with CKD. We show that FGF23 increases the frequency of spontaneous calcium waves (SCWs), a marker of cardiomyocyte arrhythmogenicity, in ARVMs. FGF23 increased sarcoplasmic reticulum Ca2+ leakage, basal phosphorylation of Ca2+-cycling proteins including phospholamban and ryanodine receptor type 2. These effects are secondary to a decrease in phosphodiesterase 4B (PDE4B) in ARVMs and in heart of mice with RF. Soluble Klotho, a circulating form of the FGF23 receptor, prevents FGF23 effects on ARVMs by increasing PDE3A and PDE3B expression. Our results suggest that the combination of high FGF23 and low sKlotho concentrations decreases PDE activity in ARVMs, which favors the occurrence of ventricular arrhythmias and may participate in the high death rate observed in patients with CKD.


Subject(s)
Arrhythmias, Cardiac/etiology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Fibroblast Growth Factors/metabolism , Glucuronidase/metabolism , Myocytes, Cardiac/metabolism , Animals , Arrhythmias, Cardiac/metabolism , Calcium Signaling , Cardiomegaly/etiology , Cyclic AMP/metabolism , Excitation Contraction Coupling , Fibroblast Growth Factor-23 , Klotho Proteins , Male , Mice , Nephrectomy , Primary Cell Culture , Rats, Wistar
7.
J Mol Cell Cardiol ; 131: 112-121, 2019 06.
Article in English | MEDLINE | ID: mdl-31028775

ABSTRACT

3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.


Subject(s)
Biosensing Techniques/methods , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Fluorescence Resonance Energy Transfer/methods , Myocytes, Cardiac/metabolism , Animals , Excitation Contraction Coupling/physiology , Humans , Signal Transduction
8.
J Mol Cell Cardiol ; 133: 57-66, 2019 08.
Article in English | MEDLINE | ID: mdl-31158360

ABSTRACT

AIMS: Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to ß-adrenergic receptor (ß-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS: Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective ß-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS: Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or ß-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.


Subject(s)
Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 3/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Excitation Contraction Coupling/genetics , Myocytes, Cardiac/physiology , Action Potentials/drug effects , Adrenergic beta-Agonists/pharmacology , Animals , Calcium Signaling/drug effects , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Heart Ventricles/cytology , Heart Ventricles/metabolism , Multigene Family , Myocytes, Cardiac/drug effects , Phosphodiesterase 3 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/pharmacology , Receptors, Adrenergic, beta/metabolism , Swine
9.
Nat Chem Biol ; 13(7): 799-806, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28553949

ABSTRACT

G-protein-coupled receptors (GPCRs) are increasingly recognized to operate from intracellular membranes as well as the plasma membrane. The ß2-adrenergic GPCR can activate Gs-linked cyclic AMP (Gs-cAMP) signaling from endosomes. We show here that the homologous human ß1-adrenergic receptor initiates an internal Gs-cAMP signal from the Golgi apparatus. By developing a chemical method to acutely squelch G-protein coupling at defined membrane locations, we demonstrate that Golgi activation contributes significantly to the overall cellular cAMP response. Golgi signaling utilizes a preexisting receptor pool rather than receptors delivered from the cell surface, requiring separate access of extracellular ligands. Epinephrine, a hydrophilic endogenous ligand, accesses the Golgi-localized receptor pool by facilitated transport requiring the organic cation transporter 3 (OCT3), whereas drugs can access the Golgi pool by passive diffusion according to hydrophobicity. We demonstrate marked differences, among both agonist and antagonist drugs, in Golgi-localized receptor access and show that ß-blocker drugs currently used in the clinic differ markedly in ability to antagonize the Golgi signal. We propose 'location bias' as a new principle for achieving functional selectivity of GPCR-directed drug action.


Subject(s)
Adrenergic beta-Antagonists/pharmacology , Dobutamine/pharmacology , Epinephrine/pharmacology , Receptors, Adrenergic, beta-1/metabolism , Adrenergic beta-Antagonists/chemistry , Dobutamine/chemistry , Epinephrine/chemistry , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HeLa Cells , Humans , Ligands , Structure-Activity Relationship
10.
Proc Natl Acad Sci U S A ; 112(7): 2023-8, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25646485

ABSTRACT

cAMP production and protein kinase A (PKA) are the most widely studied steps in ß-adrenergic receptor (ßAR) signaling in the heart; however, the multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is also activated in response to ßAR stimulation and is involved in the regulation of cardiac excitation-contraction coupling. Its activity and expression are increased during cardiac hypertrophy, in heart failure, and under conditions that promote arrhythmias both in animal models and in the human heart, underscoring the clinical relevance of CaMKII in cardiac pathophysiology. Both CaMKII and PKA phosphorylate a number of protein targets critical for Ca(2+) handling and contraction with similar, but not always identical, functional consequences. How these two pathways communicate with each other remains incompletely understood, however. To maintain homeostasis, cyclic nucleotide levels are regulated by phosphodiesterases (PDEs), with PDE4s predominantly responsible for cAMP degradation in the rodent heart. Here we have reassessed the interaction between cAMP/PKA and Ca(2+)/CaMKII signaling. We demonstrate that CaMKII activity constrains basal and ßAR-activated cAMP levels. Moreover, we show that these effects are mediated, at least in part, by CaMKII regulation of PDE4D. This regulation establishes a negative feedback loop necessary to maintain cAMP/CaMKII homeostasis, revealing a previously unidentified function for PDE4D as a critical integrator of cAMP/PKA and Ca(2+)/CaMKII signaling.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Feedback , Signal Transduction , Animals , Cyclic Nucleotide Phosphodiesterases, Type 4/drug effects , Humans , Phosphodiesterase Inhibitors/pharmacology , Phosphorylation
12.
J Cell Sci ; 127(Pt 5): 1033-42, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24413164

ABSTRACT

Multiple cAMP phosphodiesterase (PDE) isoforms play divergent roles in cardiac homeostasis but the molecular basis for their non-redundant function remains poorly understood. Here, we report a novel role for the PDE4B isoform in ß-adrenergic (ßAR) signaling in the heart. Genetic ablation of PDE4B disrupted ßAR-induced cAMP transients, as measured by FRET sensors, at the sarcolemma but not in the bulk cytosol of cardiomyocytes. This effect was further restricted to a subsarcolemmal compartment because PDE4B regulates ß1AR-, but not ß2AR- or PGE2-induced responses. The spatially restricted function of PDE4B was confirmed by its selective effects on PKA-mediated phosphorylation patterns. PDE4B limited the PKA-mediated phosphorylation of key players in excitation-contraction coupling that reside in the sarcolemmal compartment, including L-type Ca(2+) channels and ryanodine receptors, but not phosphorylation of distal cytosolic proteins. ß1AR- but not ß2AR-ligation induced PKA-dependent activation of PDE4B and interruption of this negative feedback with PKA inhibitors increased sarcolemmal cAMP. Thus, PDE4B mediates a crucial PKA-dependent feedback that controls ß1AR-dependent cAMP signals in a restricted subsarcolemmal domain. Disruption of this feedback augments local cAMP/PKA signals, leading to an increased intracellular Ca(2+) level and contraction rate.


Subject(s)
Cyclic AMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/physiology , Myocytes, Cardiac/enzymology , Receptors, Adrenergic, beta-1/metabolism , Sarcolemma/enzymology , Adrenergic beta-2 Receptor Antagonists/pharmacology , Animals , Calcium/metabolism , Cell Membrane/metabolism , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Enzyme Activation , Feedback, Physiological , Imidazoles/pharmacology , Myocardial Contraction , Phosphorylation , Protein Processing, Post-Translational , Rats , Receptors, Adrenergic, beta-2/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Second Messenger Systems
13.
FASEB J ; 28(2): 791-801, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24200884

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) that impair its expression and/or chloride channel function. Here, we provide evidence that type 4 cyclic nucleotide phosphodiesterases (PDE4s) are critical regulators of the cAMP/PKA-dependent activation of CFTR in primary human bronchial epithelial cells. In non-CF cells, PDE4 inhibition increased CFTR activity under basal conditions (ΔISC 7.1 µA/cm(2)) and after isoproterenol stimulation (increased ΔISC from 13.9 to 21.0 µA/cm(2)) and slowed the return of stimulated CFTR activity to basal levels by >3-fold. In cells homozygous for ΔF508-CFTR, the most common mutation found in CF, PDE4 inhibition alone produced minimal channel activation. However, PDE4 inhibition strongly amplified the effects of CFTR correctors, drugs that increase expression and membrane localization of CFTR, and/or CFTR potentiators, drugs that increase channel gating, to reach ∼ 25% of the chloride conductance observed in non-CF cells. Biochemical studies indicate that PDE4s are anchored to CFTR and mediate a local regulation of channel function. Taken together, our results implicate PDE4 as an important determinant of CFTR activity in airway epithelia, and support the use of PDE4 inhibitors to potentiate the therapeutic benefits of CFTR correctors and potentiators.


Subject(s)
Chlorides/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelium/metabolism , Amiloride/pharmacology , Cells, Cultured , Epithelium/drug effects , Humans , Immunoprecipitation , Quinolones/pharmacology , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Rolipram/pharmacology
14.
EMBO Rep ; 14(3): 276-83, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23381222

ABSTRACT

It is generally assumed that antagonists of Gs-coupled receptors do not activate cAMP signalling, because they do not stimulate cAMP production via Gs-protein/adenylyl cyclase activation. Here, we report a new signalling pathway whereby antagonists of ß1-adrenergic receptors (ß1ARs) increase cAMP levels locally without stimulating cAMP production directly. Binding of antagonists causes dissociation of a preformed complex between ß1ARs and Type-4 cyclic nucleotide phosphodiesterases (PDE4s). This reduces the local concentration of cAMP-hydrolytic activity, thereby increasing submembrane cAMP and PKA activity. Our study identifies receptor/PDE4 complex dissociation as a novel mechanism of antagonist action that contributes to the pharmacological properties of ß1AR antagonists and might be shared by other receptor subtypes.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Receptors, Adrenergic, beta-1/metabolism , Cell Membrane/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , HEK293 Cells , Humans , Protein Binding/drug effects , Protein Transport/drug effects , Receptors, Adrenergic, beta-1/drug effects , Signal Transduction
15.
Biochem J ; 459(3): 539-50, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24555506

ABSTRACT

PDE4s (type 4 cyclic nucleotide phosphodiesterases) are divided into long and short forms by the presence or absence of conserved N-terminal domains termed UCRs (upstream conserved regions). We have shown previously that PDE4D2, a short variant, is a monomer, whereas PDE4D3, a long variant, is a dimer. In the present study, we have determined the apparent molecular masses of various long and short PDE4 variants by size-exclusion chromatography and sucrose density-gradient centrifugation. Our results indicate that dimerization is a conserved property of all long PDE4 forms, whereas short forms are monomers. Dimerization is mediated by the UCR domains. Given their high sequence conservation, the UCR domains mediate not only homo-oligomerization, but also hetero-oligomerization of distinct PDE4 long forms as detected by co-immunoprecipitation assays and FRET microscopy. Endogenous PDE4 hetero-oligomers are, however, low in abundance compared with homo-dimers, revealing the presence of mechanisms that predispose PDE4s towards homo-oligomerization. Oligomerization is a prerequisite for the regulatory properties of the PDE4 long forms, such as their PKA (protein kinase A)-dependent activation, but is not necessary for PDE4 protein-protein interactions. As a result, individual PDE4 protomers may independently mediate protein-protein interactions, providing a mechanism whereby PDE4s contribute to the assembly of macromolecular signalling complexes.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cytosol/enzymology , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Conserved Sequence , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/chemistry , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cytosol/metabolism , Dimerization , Enzyme Activation , HEK293 Cells , Humans , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Weight , Phosphorylation , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Processing, Post-Translational , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
16.
Cell Calcium ; 117: 102839, 2024 01.
Article in English | MEDLINE | ID: mdl-38134531

ABSTRACT

Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.


Subject(s)
Calcium Channels , Two-Pore Channels , Mice , Animals , Calcium Channels/metabolism , Lysosomes/metabolism , Signal Transduction , Mice, Knockout , Cardiomegaly/metabolism , NADP/metabolism , Calcium/metabolism , Calcium Signaling
17.
Med Sci (Paris) ; 29(6-7): 617-22, 2013.
Article in French | MEDLINE | ID: mdl-23859516

ABSTRACT

Cyclic nucleotide phosphodiesterases (PDE) represent a superfamily of enzymes specialised in the degradation of cAMP and cGMP. In heart, PDE3 and PDE4 are the two major families involved in the regulation of cAMP levels and the control of inotropism. Both families are encoded by several genes, and the recent analysis of the cardiac phenotype of mice lacking these different genes provided new insights into the way they regulate excitation-contraction coupling (ECC). In particular, these studies emphasize the local character of ECC regulation by PDE, as well as the role of these PDE in maintaining calcium homeostasis and preventing cardiac arrhythmias.


Subject(s)
Arrhythmias, Cardiac/etiology , Cyclic Nucleotide Phosphodiesterases, Type 3/physiology , Cyclic Nucleotide Phosphodiesterases, Type 4/physiology , Myocardial Contraction/physiology , Animals , Arrhythmias, Cardiac/physiopathology , Humans , Mice , Muscle Cells/physiology
18.
Eur J Pharmacol ; 944: 175562, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36736940

ABSTRACT

Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to ß-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 4 , Heart Failure , Rats , Animals , Rats, Wistar , Endothelial Cells , NG-Nitroarginine Methyl Ester , Cyclic Nucleotide Phosphodiesterases, Type 3 , Mesenteric Arteries , 3',5'-Cyclic-AMP Phosphodiesterases
19.
Front Physiol ; 14: 1132165, 2023.
Article in English | MEDLINE | ID: mdl-36875015

ABSTRACT

Models based on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are proposed in almost any field of physiology and pharmacology. The development of human induced pluripotent stem cell-derived cardiomyocytes is expected to become a step forward to increase the translational power of cardiovascular research. Importantly they should allow to study genetic effects on an electrophysiological background close to the human situation. However, biological and methodological issues revealed when human induced pluripotent stem cell-derived cardiomyocytes were used in experimental electrophysiology. We will discuss some of the challenges that should be considered when human induced pluripotent stem cell-derived cardiomyocytes will be used as a physiological model.

20.
J Mol Cell Cardiol ; 52(2): 323-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21888909

ABSTRACT

In the light of the knowledge accumulated over the years, it becomes clear that intracellular cAMP is not uniformly distributed within cardiomyocytes and that cAMP compartmentation is required for adequate processing and targeting of the information generated at the membrane. Localized cAMP signals may be generated by interplay between discrete production sites and restricted diffusion within the cytoplasm. In addition to specialized membrane structures that may limit cAMP spreading, degradation of the second messenger by cyclic nucleotide phosphodiesterases (PDEs) appears critical for the formation of dynamic microdomains that confer specificity of the response to various hormones. This review will cover the role of the different cAMP-PDE isoforms in this process. This article is part of a Special Issue entitled "Local Signaling in Myocytes."


Subject(s)
Cyclic AMP/metabolism , Myocytes, Cardiac/enzymology , Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Animals , Heart Failure/metabolism , Humans , Isoenzymes/metabolism , Myocytes, Cardiac/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL