Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Opt ; 46(21): 4702-11, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-17609718

ABSTRACT

Quadratic correlation filters (QCFs) have been used successfully to detect and recognize targets embedded in background clutter. Recently, a QCF called the Rayleigh quotient quadratic correlation filter (RQQCF) was formulated for automatic target recognition (ATR) in IR imagery. Using training images from target and clutter classes, the RQQCF explicitly maximized a class separation metric. What we believe to be a novel approach is presented for ATR that synthesizes the RQQCF using compressed images. The proposed approach considerably reduces the computational complexity and storage requirements while retaining the high recognition accuracy of the original RQQCF technique. The advantages of the proposed scheme are illustrated using sample results obtained from experiments on IR imagery.

2.
Appl Opt ; 43(2): 416-24, 2004 Jan 10.
Article in English | MEDLINE | ID: mdl-14735960

ABSTRACT

Classification decision tree algorithms have recently been used in pattern-recognition problems. In this paper, we propose a self-designing system that uses the classification tree algorithms and that is capable of recognizing a large number of signals. Preprocessing techniques are used to make the recognition process more effective. A combination of the original, as well as the preprocessed, signals is projected into different transform domains. Enormous sets of criteria that characterize the signals can be developed from the signal representations in these domains. At each node of the classification tree, an appropriately selected criterion is optimized with respect to desirable performance features such as complexity and noise immunity. The criterion is then employed in conjunction with a vector quantizer to divide the signals presented at a particular node in that stage into two approximately equal groups. When the process is complete, each signal is represented by a unique composite binary word index, which corresponds to the signal path through the tree, from the input to one of the terminal nodes of the tree. Experimental results verify the excellent classification accuracy of this system. High performance is maintained for both noisy and corrupt data.

SELECTION OF CITATIONS
SEARCH DETAIL