Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Publication year range
1.
MMWR Morb Mortal Wkly Rep ; 72(7): 171-176, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36795626

ABSTRACT

Typhoid fever, an acute febrile illness caused by Salmonella enterica serovar Typhi (S. Typhi), is endemic in many low- and middle-income countries† (1). In 2015, an estimated 11-21 million typhoid fever cases and 148,000-161,000 associated deaths occurred worldwide (2). Effective prevention strategies include improved access to and use of infrastructure supporting safe water, sanitation, and hygiene (WASH); health education; and vaccination (1). The World Health Organization (WHO) recommends programmatic use of typhoid conjugate vaccines for typhoid fever control and prioritization of vaccine introduction in countries with the highest typhoid fever incidence or high prevalence of antimicrobial-resistant S. Typhi (1). This report describes typhoid fever surveillance, incidence estimates, and the status of typhoid conjugate vaccine introduction during 2018-2022. Because routine surveillance for typhoid fever has low sensitivity, population-based studies have guided estimates of case counts and incidence in 10 countries since 2016 (3-6). In 2019, an updated modeling study estimated that 9.2 million (95% CI = 5.9-14.1) typhoid fever cases and 110,000 (95% CI = 53,000-191,000) deaths occurred worldwide, with the highest estimated incidence in the WHO South-East Asian (306 cases per 100,000 persons), Eastern Mediterranean (187), and African (111) regions (7). Since 2018, five countries (Liberia, Nepal, Pakistan, Samoa [based on self-assessment], and Zimbabwe) with estimated high typhoid fever incidence (≥100 cases per 100,000 population per year) (8), high antimicrobial resistance prevalence, or recent outbreaks introduced typhoid conjugate vaccines into their routine immunization programs (2). To guide vaccine introduction decisions, countries should consider all available information, including surveillance of laboratory-confirmed cases, population-based and modeling studies, and outbreak reports. Establishing and strengthening typhoid fever surveillance will be important to measure vaccine impact.


Subject(s)
Anti-Infective Agents , Typhoid Fever , Typhoid-Paratyphoid Vaccines , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Vaccines, Conjugate , Incidence
2.
J Clin Microbiol ; 56(11)2018 11.
Article in English | MEDLINE | ID: mdl-30209182

ABSTRACT

Campylobacter spp. are foodborne and waterborne pathogens. While rather accurate estimates for these pathogens are available in industrialized countries, a lack of diagnostic capacity in developing countries limits accurate assessments of prevalence in many regions. Proficiency in the identification and susceptibility testing of these organisms is critical for surveillance and control efforts. The aim of the study was to assess performance for identification and susceptibility testing of thermotolerant Campylobacter spp. among laboratories participating in the World Health Organization (WHO) Global Foodborne Infections Network (GFN) External Quality Assurance System (EQAS) over a 9-year period. Participants (primarily national-level laboratories) were encouraged to self-evaluate their performance as part of continuous quality improvement. The ability to correctly identify Campylobacter spp. varied by year and ranged from 61.9% (2008) to 90.7% (2012), and the ability to correctly perform antimicrobial susceptibility testing (AST) for Campylobacter spp. appeared to steadily increase from 91.4% to 93.6% in the test period (2009 to 2012). The poorest performance (60.0% correct identification and 86.8% correct AST results) was observed in African laboratories. Overall, approximately 10% of laboratories reported either an incorrect identification or antibiogram. As most participants were supranational reference laboratories, these data raise significant concerns regarding capacity and proficiency at the local clinical level. Addressing these diagnostic challenges is critical for both patient-level management and broader surveillance and control efforts.


Subject(s)
Anti-Bacterial Agents/pharmacology , Campylobacter/drug effects , Campylobacter/isolation & purification , Laboratory Proficiency Testing , Quality Assurance, Health Care/methods , Bacteriological Techniques/standards , Campylobacter/physiology , Campylobacter Infections/diagnosis , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Developing Countries/statistics & numerical data , Drug Resistance, Bacterial/drug effects , Foodborne Diseases/diagnosis , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Humans , Microbial Sensitivity Tests/standards , Prevalence , Quality Assurance, Health Care/standards , Thermotolerance , World Health Organization
3.
Lancet ; 385(9973): 1136-45, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25458731

ABSTRACT

Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Paratyphoid Fever/prevention & control , Salmonella paratyphi A/physiology , Typhoid Fever/prevention & control , Typhoid-Paratyphoid Vaccines/therapeutic use , Africa , Asia , Drug Resistance, Bacterial/physiology , Drug Resistance, Multiple , Humans , Paratyphoid Fever/drug therapy , Salmonella enterica/immunology , Salmonella enterica/physiology , Salmonella paratyphi A/immunology , Typhoid Fever/drug therapy
4.
J Clin Microbiol ; 53(2): 677-80, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25428145

ABSTRACT

One unreported case of extended-spectrum-beta-lactamase (ESBL)-producing Salmonella enterica serovar Typhi was identified, whole-genome sequence typed, among other analyses, and compared to other available genomes of S. Typhi. The reported strain was similar to a previously published strain harboring blaSHV-12 from the Philippines and likely part of an undetected outbreak, the first of ESBL-producing S. Typhi.


Subject(s)
Salmonella typhi/enzymology , Salmonella typhi/isolation & purification , Travel , Typhoid Fever/microbiology , beta-Lactamases/metabolism , Disease Outbreaks , Genome, Bacterial , Genotype , Humans , Molecular Sequence Data , Philippines/epidemiology , Salmonella typhi/genetics , Sequence Analysis, DNA , Typhoid Fever/epidemiology , beta-Lactamases/genetics
5.
Emerg Infect Dis ; 20(9): 1481-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25147968

ABSTRACT

Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th-18th centuries and diversified during the 1920s and 1950s.


Subject(s)
Genome, Bacterial , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella enteritidis/classification , Salmonella enteritidis/genetics , Disease Outbreaks , Evolution, Molecular , Humans , Models, Statistical , Phylogeny , Polymorphism, Single Nucleotide , Prevalence , Serogroup
6.
N Engl J Med ; 364(10): 918-27, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21345092

ABSTRACT

BACKGROUND: Raw produce is an increasingly recognized vehicle for salmonellosis. We investigated a nationwide outbreak that occurred in the United States in 2008. METHODS: We defined a case as diarrhea in a person with laboratory-confirmed infection with the outbreak strain of Salmonella enterica serotype Saintpaul. Epidemiologic, traceback, and environmental studies were conducted. RESULTS: Among the 1500 case subjects, 21% were hospitalized, and 2 died. In three case-control studies of cases not linked to restaurant clusters, illness was significantly associated with eating raw tomatoes (matched odds ratio, 5.6; 95% confidence interval [CI], 1.6 to 30.3); eating at a Mexican-style restaurant (matched odds ratio, 4.6; 95% CI, 2.1 to ∞) and eating pico de gallo salsa (matched odds ratio, 4.0; 95% CI, 1.5 to 17.8), corn tortillas (matched odds ratio, 2.3; 95% CI, 1.2 to 5.0), or salsa (matched odds ratio, 2.1; 95% CI, 1.1 to 3.9); and having a raw jalapeño pepper in the household (matched odds ratio, 2.9; 95% CI, 1.2 to 7.6). In nine analyses of clusters associated with restaurants or events, jalapeño peppers were implicated in all three clusters with implicated ingredients, and jalapeño or serrano peppers were an ingredient in an implicated item in the other three clusters. Raw tomatoes were an ingredient in an implicated item in three clusters. The outbreak strain was identified in jalapeño peppers collected in Texas and in agricultural water and serrano peppers on a Mexican farm. Tomato tracebacks did not converge on a source. CONCLUSIONS: Although an epidemiologic association with raw tomatoes was identified early in this investigation, subsequent epidemiologic and microbiologic evidence implicated jalapeño and serrano peppers. This outbreak highlights the importance of preventing raw-produce contamination.


Subject(s)
Capsicum/microbiology , Disease Outbreaks , Salmonella Food Poisoning/epidemiology , Salmonella enterica , Solanum lycopersicum/microbiology , Case-Control Studies , Cluster Analysis , Coriandrum/microbiology , Disease Outbreaks/prevention & control , Food Contamination/prevention & control , Food Microbiology , Humans , Odds Ratio , Restaurants , Salmonella Food Poisoning/microbiology , Salmonella enterica/classification , Salmonella enterica/isolation & purification , Serotyping , United States/epidemiology
7.
J Glob Antimicrob Resist ; 39: 69-72, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173740

ABSTRACT

OBJECTIVES: The United States Centers for Disease Control and Prevention (CDC) conducts active surveillance for typhoid fever cases caused by Salmonella enterica serovar Typhi (Typhi). Here we describe the characteristics of the first two cases of mph(A)-positive azithromycin-resistant Typhi identified through US surveillance. METHODS: Isolates were submitted to public health laboratories, sequenced, and screened for antimicrobial resistance determinants and plasmids, as part of CDC PulseNet's routine genomic surveillance. Antimicrobial susceptibility testing and long-read sequencing were also performed. Basic case information (age, sex, travel, outcome) was collected through routine questionnaires; additional epidemiological data was requested through follow-up patient interviews. RESULTS: The patients are related and both reported travel to India (overlapping travel dates) before illness onset. Both Typhi genomes belong to the GenoTyphi lineage 4.3.1.1 and carry the azithromycin-resistance gene mph(A) on a PTU-FE (IncFIA/FIB/FII) plasmid. These strains differ genetically from mph(A)-positive Typhi genomes recently reported from Pakistan, suggesting independent emergence of azithromycin resistance in India. CONCLUSIONS: Cases of typhoid fever caused by Typhi strains resistant to all available oral treatment options are cause for concern and support the need for vaccination of travellers to Typhi endemic regions. US genomic surveillance serves as an important global sentinel for detection of strains with known and emerging antimicrobial resistance profiles, including strains from areas where routine surveillance is not conducted.

8.
Emerg Infect Dis ; 19(9): 1514-7, 2013.
Article in English | MEDLINE | ID: mdl-23965530

ABSTRACT

During an investigation of an outbreak of gastroenteritis caused by Salmonella enterica serovar Paratyphi B variant L(+) tartrate(+), we identified unpasteurized tempeh as a novel food vehicle and Rhizopus spp. starter culture as the source of the contamination. Safe handling of uncooked, unpasteurized tempeh should be emphasized for prevention of foodborne illnesses.


Subject(s)
Food Contamination , Food Microbiology , Gastroenteritis/epidemiology , Gastroenteritis/etiology , Salmonella enterica , Soy Foods/microbiology , Bacterial Typing Techniques/methods , Disease Outbreaks , Gastroenteritis/diagnosis , Humans , North Carolina/epidemiology , Salmonella enterica/classification
9.
Am J Trop Med Hyg ; 109(1): 22-31, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37253442

ABSTRACT

Typhoid fever burden can vary over time. Long-term data can inform prevention strategies; however, such data are lacking in many African settings. We reexamined typhoid fever incidence and antimicrobial resistance (AMR) over a 10-year period in Kibera, a densely populated urban informal settlement where a high burden has been previously described. We used data from the Population Based Infectious Diseases Surveillance platform to estimate crude and adjusted incidence rates and prevalence of AMR in nearly 26,000 individuals of all ages. Demographic and healthcare-seeking information was collected through household visits. Blood cultures were processed for patients with acute fever or lower respiratory infection. Between 2010 and 2019, 16,437 participants were eligible for blood culture and 11,848 (72.1%) had a culture performed. Among 11,417 noncontaminated cultures (96.4%), 237 grew Salmonella enterica serovar Typhi (2.1%). Overall crude and adjusted incidences were 95 and 188 cases per 100,000 person-years of observation (pyo), respectively. Annual crude incidence varied from 144 to 233 between 2010 and 2012 and from 9 to 55 between 2013 and 2018 and reached 130 per 100,000 pyo in 2019. Children 5-9 years old had the highest overall incidence (crude, 208; adjusted, 359 per 100,000 pyo). Among isolates tested, 156 of 217 were multidrug resistant (resistant to chloramphenicol, ampicillin, and trimethoprim/sulfamethoxazole [71.9%]) and 6 of 223 were resistant to ciprofloxacin (2.7%). Typhoid fever incidence resurged in 2019 after a prolonged period of low rates, with the highest incidence among children. Typhoid fever control measures, including vaccines, could reduce morbidity in this setting.


Subject(s)
Typhoid Fever , Child , Humans , Child, Preschool , Typhoid Fever/epidemiology , Incidence , Kenya/epidemiology , Salmonella typhi , Ciprofloxacin/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
10.
mBio ; 14(4): e0117923, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37504577

ABSTRACT

We performed whole-genome sequencing of 174 Salmonella Typhi and 54 Salmonella Paratyphi A isolates collected through prospective surveillance in the context of a phased typhoid conjugate vaccine introduction in Navi Mumbai, India. We investigate the temporal and geographical patterns of emergence and spread of antimicrobial resistance. We evaluated the relationship between the spatial distance between households and genetic clustering of isolates. Most isolates were non-susceptible to fluoroquinolones, with nearly 20% containing ≥3 quinolone resistance-determining region mutations. Two H58 isolates carried an IncX3 plasmid containing blaSHV-12, associated with ceftriaxone resistance, suggesting that the ceftriaxone-resistant isolates from India independently evolved on multiple occasions. Among S. Typhi, we identified two main clades circulating (2.2 and 4.3.1 [H58]); 2.2 isolates were closely related following a single introduction around 2007, whereas H58 isolates had been introduced multiple times to the city. Increasing geographic distance between isolates was strongly associated with genetic clustering (odds ratio [OR] = 0.72 per km; 95% credible interval [CrI]: 0.66-0.79). This effect was seen for distances up to 5 km (OR = 0.65 per km; 95% CrI: 0.59-0.73) but not seen for distances beyond 5 km (OR = 1.02 per km; 95% CrI: 0.83-1.26). There was a non-significant reduction in odds of clustering for pairs of isolates in vaccination communities compared with non-vaccination communities or mixed pairs compared with non-vaccination communities. Our findings indicate that S. Typhi was repeatedly introduced into Navi Mumbai and then spread locally, with strong evidence of spatial genetic clustering. In addition to vaccination, local interventions to improve water and sanitation will be critical to interrupt transmission. IMPORTANCE Enteric fever remains a major public health concern in many low- and middle-income countries, as antimicrobial resistance (AMR) continues to emerge. Geographical patterns of typhoidal Salmonella spread, critical to monitoring AMR and planning interventions, are poorly understood. We performed whole-genome sequencing of S. Typhi and S. Paratyphi A isolates collected in Navi Mumbai, India before and after a typhoid conjugate vaccine introduction. From timed phylogenies, we found two dominant circulating lineages of S. Typhi in Navi Mumbai-lineage 2.2, which expanded following a single introduction a decade prior, and 4.3.1 (H58), which had been introduced repeatedly from other parts of India, frequently containing "triple mutations" conferring high-level ciprofloxacin resistance. Using Bayesian hierarchical statistical models, we found that spatial distance between cases was strongly associated with genetic clustering at a fine scale (<5 km). Together, these findings suggest that antimicrobial-resistant S. Typhi frequently flows between cities and then spreads highly locally, which may inform surveillance and prevention strategies.


Subject(s)
Salmonella typhi , Typhoid Fever , Humans , Typhoid Fever/epidemiology , Typhoid Fever/prevention & control , Anti-Bacterial Agents/pharmacology , Ceftriaxone , Bayes Theorem , Prospective Studies , Vaccines, Conjugate , Drug Resistance, Bacterial/genetics , Genotype , Microbial Sensitivity Tests , India/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL