Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.227
Filter
Add more filters

Publication year range
1.
Cell ; 158(5): 977-979, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171401

ABSTRACT

The biophysical basis of temperature-sensitive ion channel gating has been a tough nut to crack. Chowdhury, et al. use a protein engineering approach to render a temperature-insensitive voltage-gated channel cold- or heat-responsive to reveal principles for temperature-gating and a plausible model for molecularly enabling this mode of environmental responsiveness.


Subject(s)
Ion Channels/chemistry , Ion Channels/metabolism , Protein Engineering , Animals , Humans
2.
Cell ; 150(2): 264-78, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817890

ABSTRACT

Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability and drive clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of M3-AML samples with a known initiating event (PML-RARA) versus the genomes of normal karyotype M1-AML samples and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is "captured" as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.


Subject(s)
Clonal Evolution , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , Aged , DNA Mutational Analysis , Disease Progression , Female , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Humans , Leukemia, Myeloid, Acute/physiopathology , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Recurrence , Skin/metabolism , Young Adult
3.
Proc Natl Acad Sci U S A ; 121(18): e2317690121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38648485

ABSTRACT

The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.


Subject(s)
GATA2 Transcription Factor , Hematopoietic Stem Cells , Oncogene Proteins, Fusion , Animals , Humans , Mice , Binding Sites , Cell Self Renewal , Chromatin/metabolism , DNA/metabolism , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Hematopoietic Stem Cells/metabolism , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins, Fusion/genetics , Promyelocytic Leukemia Protein/metabolism , Promyelocytic Leukemia Protein/genetics , Protein Binding , Retinoic Acid Receptor alpha/metabolism , Retinoic Acid Receptor alpha/genetics
4.
Nucleic Acids Res ; 51(12): 5901-5910, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37224533

ABSTRACT

Although targeting TfR1 to deliver oligonucleotides to skeletal muscle has been demonstrated in rodents, effectiveness and pharmacokinetic/pharmacodynamic (PKPD) properties remained unknown in higher species. We developed antibody-oligonucleotide conjugates (AOCs) towards mice or monkeys utilizing anti-TfR1 monoclonal antibodies (αTfR1) conjugated to various classes of oligonucleotides (siRNA, ASOs and PMOs). αTfR1 AOCs delivered oligonucleotides to muscle tissue in both species. In mice, αTfR1 AOCs achieved a > 15-fold higher concentration to muscle tissue than unconjugated siRNA. A single dose of an αTfR1 conjugated to an siRNA against Ssb mRNA produced > 75% Ssb mRNA reduction in mice and monkeys, and mRNA silencing was greatest in skeletal and cardiac (striated) muscle with minimal to no activity in other major organs. In mice the EC50 for Ssb mRNA reduction in skeletal muscle was >75-fold less than in systemic tissues. Oligonucleotides conjugated to control antibodies or cholesterol produced no mRNA reduction or were 10-fold less potent, respectively. Tissue PKPD of AOCs demonstrated mRNA silencing activity primarily driven by receptor-mediated delivery in striated muscle for siRNA oligonucleotides. In mice, we show that AOC-mediated delivery is operable across various oligonucleotide modalities. AOC PKPD properties translated to higher species, providing promise for a new class of oligonucleotide therapeutics.


Subject(s)
Oligonucleotides, Antisense , Oligonucleotides , Mice , Animals , Antibodies/therapeutic use , RNA, Small Interfering/genetics , RNA, Messenger/genetics , Muscle, Skeletal
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969841

ABSTRACT

Ancient DNA recovered from Pleistocene sediments represents a rich resource for the study of past hominin and environmental diversity. However, little is known about how DNA is preserved in sediments and the extent to which it may be translocated between archaeological strata. Here, we investigate DNA preservation in 47 blocks of resin-impregnated archaeological sediment collected over the last four decades for micromorphological analyses at 13 prehistoric sites in Europe, Asia, Africa, and North America and show that such blocks can preserve DNA of hominins and other mammals. Extensive microsampling of sediment blocks from Denisova Cave in the Altai Mountains reveals that the taxonomic composition of mammalian DNA differs drastically at the millimeter-scale and that DNA is concentrated in small particles, especially in fragments of bone and feces (coprolites), suggesting that these are substantial sources of DNA in sediments. Three microsamples taken in close proximity in one of the blocks yielded Neanderthal DNA from at least two male individuals closely related to Denisova 5, a Neanderthal toe bone previously recovered from the same layer. Our work indicates that DNA can remain stably localized in sediments over time and provides a means of linking genetic information to the archaeological and ecological records on a microstratigraphic scale.


Subject(s)
Caves , DNA, Ancient , Fossils , Hominidae/genetics , Neanderthals/genetics , Animals
6.
J Infect Dis ; 229(6): 1702-1710, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38213276

ABSTRACT

Definitive data demonstrating the utility of coronavirus disease 2019 (COVID-19) convalescent plasma (CCP) for treating immunocompromised patients remains elusive. To better understand the mechanism of action of CCP, we studied viral replication and disease progression in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected hamsters treated with CCP obtained from recovered COVID-19 patients that were also vaccinated with an mRNA vaccine, hereafter referred to as Vaxplas. Vaxplas transiently enhanced disease severity and lung pathology in hamsters treated near peak viral replication due to immune complex and activated complement deposition in pulmonary endothelium, and recruitment of M1 proinflammatory macrophages into the lung parenchyma. However, aside from one report, transient enhanced disease has not been reported in CCP recipient patients, and the transient enhanced disease in Vaxplas hamsters may have been due to mismatched species IgG-FcR interactions, infusion timing, or other experimental factors. Despite transient disease enhancement, Vaxplas dramatically reduced virus replication in lungs and improved infection outcome in SARS-CoV-2-infected hamsters.


Subject(s)
Antibodies, Viral , COVID-19 Serotherapy , COVID-19 Vaccines , COVID-19 , Immunization, Passive , Lung , SARS-CoV-2 , Virus Replication , Animals , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Cricetinae , Lung/virology , Lung/immunology , Lung/pathology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Humans , Mesocricetus , Disease Models, Animal , Male , Female
7.
Circulation ; 147(5): 364-374, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36705028

ABSTRACT

BACKGROUND: Acute myocardial injury in hospitalized patients with coronavirus disease 2019 (COVID-19) has a poor prognosis. Its associations and pathogenesis are unclear. Our aim was to assess the presence, nature, and extent of myocardial damage in hospitalized patients with troponin elevation. METHODS: Across 25 hospitals in the United Kingdom, 342 patients with COVID-19 and an elevated troponin level (COVID+/troponin+) were enrolled between June 2020 and March 2021 and had a magnetic resonance imaging scan within 28 days of discharge. Two prospective control groups were recruited, comprising 64 patients with COVID-19 and normal troponin levels (COVID+/troponin-) and 113 patients without COVID-19 or elevated troponin level matched by age and cardiovascular comorbidities (COVID-/comorbidity+). Regression modeling was performed to identify predictors of major adverse cardiovascular events at 12 months. RESULTS: Of the 519 included patients, 356 (69%) were men, with a median (interquartile range) age of 61.0 years (53.8, 68.8). The frequency of any heart abnormality, defined as left or right ventricular impairment, scar, or pericardial disease, was 2-fold greater in cases (61% [207/342]) compared with controls (36% [COVID+/troponin-] versus 31% [COVID-/comorbidity+]; P<0.001 for both). More cases than controls had ventricular impairment (17.2% versus 3.1% and 7.1%) or scar (42% versus 7% and 23%; P<0.001 for both). The myocardial injury pattern was different, with cases more likely than controls to have infarction (13% versus 2% and 7%; P<0.01) or microinfarction (9% versus 0% and 1%; P<0.001), but there was no difference in nonischemic scar (13% versus 5% and 14%; P=0.10). Using the Lake Louise magnetic resonance imaging criteria, the prevalence of probable recent myocarditis was 6.7% (23/342) in cases compared with 1.7% (2/113) in controls without COVID-19 (P=0.045). During follow-up, 4 patients died and 34 experienced a subsequent major adverse cardiovascular event (10.2%), which was similar to controls (6.1%; P=0.70). Myocardial scar, but not previous COVID-19 infection or troponin, was an independent predictor of major adverse cardiovascular events (odds ratio, 2.25 [95% CI, 1.12-4.57]; P=0.02). CONCLUSIONS: Compared with contemporary controls, patients with COVID-19 and elevated cardiac troponin level have more ventricular impairment and myocardial scar in early convalescence. However, the proportion with myocarditis was low and scar pathogenesis was diverse, including a newly described pattern of microinfarction. REGISTRATION: URL: https://www.isrctn.com; Unique identifier: 58667920.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Female , Humans , Male , Middle Aged , Cicatrix , COVID-19/complications , COVID-19/epidemiology , Hospitalization , Prospective Studies , Risk Factors , Troponin , Aged
8.
Epidemiol Rev ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324739

ABSTRACT

For lethal means safety counseling interventions (LMSC) to reduce population-level suicide rates, interventions must be deployed across many settings and populations. We conducted a systematic search in six databases to review the current state of LMSC interventions across study designs, settings, messengers, populations, and injury prevention levels (e.g., universal). Eligibility criteria were: any individual or group receiving a LMSC intervention involving a human-to-human component aiming to influence adult behaviors related to lethal suicide methods, and outcome assessment of storage behaviors and/or suicidal self-directed violence (SDV). Risk of bias was assessed using the Effective Public Health Practice Project (EPHPP) quality assessment tool. A descriptive synthesis approach was used for analysis. Twenty-two studies were included that reported medication and/or firearm storage behaviors and/or SDV following LMSC. Fourteen of the 19 studies assessing behavioral change reported a significant improvement in safe storage behaviors, and all studies measuring acceptability reported that participants found the interventions favorable. Quality of evidence was limited. No studies were rated low risk of bias, and 77% were rated high risk of bias. There was substantial heterogeneity in the settings, populations, injury prevention levels, delivery methods, and intervention elements. Many included studies focused on caregivers of pediatric populations, and few studies assessed SDV outcomes. Higher quality trials conducted across a variety of settings, particularly those focusing on adults at risk of suicide, are needed. There was no funding for this review, and it was preregistered on the International Prospective Register of Systematic Reviews (PROSPERO) (ID: CRD42021230668).

9.
N Engl J Med ; 384(10): 924-935, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33704937

ABSTRACT

BACKGROUND: Genomic analysis is essential for risk stratification in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS). Whole-genome sequencing is a potential replacement for conventional cytogenetic and sequencing approaches, but its accuracy, feasibility, and clinical utility have not been demonstrated. METHODS: We used a streamlined whole-genome sequencing approach to obtain genomic profiles for 263 patients with myeloid cancers, including 235 patients who had undergone successful cytogenetic analysis. We adapted sample preparation, sequencing, and analysis to detect mutations for risk stratification using existing European Leukemia Network (ELN) guidelines and to minimize turnaround time. We analyzed the performance of whole-genome sequencing by comparing our results with findings from cytogenetic analysis and targeted sequencing. RESULTS: Whole-genome sequencing detected all 40 recurrent translocations and 91 copy-number alterations that had been identified by cytogenetic analysis. In addition, we identified new clinically reportable genomic events in 40 of 235 patients (17.0%). Prospective sequencing of samples obtained from 117 consecutive patients was performed in a median of 5 days and provided new genetic information in 29 patients (24.8%), which changed the risk category for 19 patients (16.2%). Standard AML risk groups, as defined by sequencing results instead of cytogenetic analysis, correlated with clinical outcomes. Whole-genome sequencing was also used to stratify patients who had inconclusive results by cytogenetic analysis into risk groups in which clinical outcomes were measurably different. CONCLUSIONS: In our study, we found that whole-genome sequencing provided rapid and accurate genomic profiling in patients with AML or MDS. Such sequencing also provided a greater diagnostic yield than conventional cytogenetic analysis and more efficient risk stratification on the basis of standard risk categories. (Funded by the Siteman Cancer Research Fund and others.).


Subject(s)
Cytogenetic Analysis , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Whole Genome Sequencing , Feasibility Studies , Female , Humans , Male , Middle Aged , Proportional Hazards Models , Survival Analysis , Whole Genome Sequencing/methods
10.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36857575

ABSTRACT

Microbial genome annotation is the process of identifying structural and functional elements in DNA sequences and subsequently attaching biological information to those elements. DRAM is a tool developed to annotate bacterial, archaeal, and viral genomes derived from pure cultures or metagenomes. DRAM goes beyond traditional annotation tools by distilling multiple gene annotations to genome level summaries of functional potential. Despite these benefits, a downside of DRAM is the requirement of large computational resources, which limits its accessibility. Further, it did not integrate with downstream metabolic modeling tools that require genome annotation. To alleviate these constraints, DRAM and the viral counterpart, DRAM-v, are now available and integrated with the freely accessible KBase cyberinfrastructure. With kb_DRAM users can generate DRAM annotations and functional summaries from microbial or viral genomes in a point-and-click interface, as well as generate genome-scale metabolic models from DRAM annotations. AVAILABILITY AND IMPLEMENTATION: For kb_DRAM users, the kb_DRAM apps on KBase can be found in the catalog at https://narrative.kbase.us/#catalog/modules/kb_DRAM. For kb_DRAM users, a tutorial workflow with all documentation is available at https://narrative.kbase.us/narrative/129480. For kb_DRAM developers, software is available at https://github.com/shafferm/kb_DRAM.


Subject(s)
Bacteria , Software , Molecular Sequence Annotation , Bacteria/genetics , Archaea/genetics , Metabolomics
11.
PLoS Pathog ; 18(2): e1009914, 2022 02.
Article in English | MEDLINE | ID: mdl-35143587

ABSTRACT

As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , COVID-19/pathology , Disease Models, Animal , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virulence
12.
Am J Pathol ; 193(6): 690-701, 2023 06.
Article in English | MEDLINE | ID: mdl-36906263

ABSTRACT

Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.


Subject(s)
COVID-19 , Vascular Diseases , Cricetinae , Animals , Humans , Mesocricetus , SARS-CoV-2 , COVID-19/pathology , Lung/pathology , Vascular Diseases/pathology , Disease Models, Animal
13.
Blood ; 140(13): 1533-1548, 2022 09 29.
Article in English | MEDLINE | ID: mdl-35895896

ABSTRACT

We have developed a deep-scale proteome and phosphoproteome database from 44 representative acute myeloid leukemia (AML) patients from the LAML TCGA dataset and 6 healthy bone marrow-derived controls. After confirming data quality, we orthogonally validated several previously undescribed features of AML revealed by the proteomic data. We identified examples of posttranscriptionally regulated proteins both globally (ie, in all AML samples) and also in patients with recurrent AML driver mutations. For example, samples with IDH1/2 mutations displayed elevated levels of the 2-oxoglutarate-dependent histone demethylases KDM4A/B/C, despite no changes in messenger RNA levels for these genes; we confirmed this finding in vitro. In samples with NPMc mutations, we identified several nuclear importins with posttranscriptionally increased protein abundance and showed that they interact with NPMc but not wild-type NPM1. We identified 2 cell surface proteins (CD180 and MRC1/CD206) expressed on AML blasts of many patients (but not healthy CD34+ stem/progenitor cells) that could represent novel targets for immunologic therapies and confirmed these targets via flow cytometry. Finally, we detected nearly 30 000 phosphosites in these samples; globally, AML samples were associated with the abnormal phosphorylation of specific residues in PTPN11, STAT3, AKT1, and PRKCD. FLT3-TKD samples were associated with increased phosphorylation of activating tyrosines on the cytoplasmic Src-family tyrosine kinases FGR and HCK and related signaling proteins. PML-RARA-initiated AML samples displayed a unique phosphorylation signature, and TP53-mutant samples showed abundant phosphorylation of serine-183 on TP53 itself. This publicly available database will serve as a foundation for further investigations of protein dysregulation in AML pathogenesis.


Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Histone Demethylases/metabolism , Humans , Jumonji Domain-Containing Histone Demethylases , Karyopherins/genetics , Ketoglutaric Acids , Leukemia, Myeloid, Acute/pathology , Membrane Proteins/genetics , Mutation , Nuclear Proteins/genetics , Nucleophosmin , Proteome/metabolism , Proteomics , RNA, Messenger , Serine/genetics , fms-Like Tyrosine Kinase 3/genetics , src-Family Kinases/metabolism
15.
J Am Acad Dermatol ; 90(4): 798-805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38081390

ABSTRACT

BACKGROUND: Amid a movement toward value-based healthcare, increasing emphasis has been placed on outcomes and cost of medical services. To define and demonstrate the quality of services provided by Mohs surgeons, it is important to identify and understand the key aspects of Mohs micrographic surgery (MMS) that contribute to excellence in patient care. OBJECTIVE: The purpose of this study is to develop and identify a comprehensive list of metrics in an initial effort to define excellence in MMS. METHODS: Mohs surgeons participated in a modified Delphi process to reach a consensus on a list of metrics. Patients were administered surveys to gather patient perspectives. RESULTS: Twenty-four of the original 66 metrics met final inclusion criteria. Broad support for the initiative was obtained through physician feedback. LIMITATIONS: Limitations of this study include attrition bias across survey rounds and participation at the consensus meeting. Furthermore, the list of metrics is based on expert consensus instead of quality evidence-based outcomes. CONCLUSION: With the goal of identifying metrics that demonstrate excellence in performance of MMS, this initial effort has shown that Mohs surgeons and patients have unique perspectives and can be engaged in a data-driven approach to help define excellence in the field of MMS.


Subject(s)
Skin Neoplasms , Surgeons , Humans , Skin Neoplasms/surgery , Mohs Surgery , Consensus , Benchmarking
16.
Dermatol Surg ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38574349

ABSTRACT

BACKGROUND: Mohs surgery of eyelid skin cancers requires detailed knowledge of anatomy for precise surgery and accurate evaluation of histology. OBJECTIVE: To review the histology of the peritarsal eyelid using frozen sections as encountered intraoperatively by Mohs surgeons. METHODS: The authors review the literature describing the anatomy and histology of the peritarsal eyelid from the lens of a Mohs surgeon. Histology from select Mohs cases is used to frame the discussion of the microanatomy of this region. RESULTS: The peritarsal eyelids contain a unique mixture of skin, muscle, tarsus, glandular tissue, and conjunctiva. The histologic appearance of many of these structures differs from skin found outside of this anatomic region. Tumors of the eyelid and periocular region may mimic normal histologic structures found within the peritarsal eyelid. CONCLUSION: The peritarsal eyelids have unique anatomy and associated histologic structures. Knowledge of the detailed histoanatomy is required for confident execution of Mohs surgery in this anatomic region.

17.
Dermatol Surg ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38754124

ABSTRACT

BACKGROUND AND OBJECTIVE: Large defects of the nose after Mohs surgery pose a significant reconstructive challenge to both dermatologic and reconstructive surgeons. The authors present their 12-year experience utilizing acellular dermal matrices for nasal reconstruction. METHODS: A retrospective review of patients undergoing Mohs surgery and alloplastic nasal reconstruction with acellular dermal matrices between 2010 and 2022 was performed. Patients who underwent single-stage reconstruction and dual-stage reconstruction with skin graft with at least 90 days of follow-up were included. RESULTS: Fifty-one patients met criteria with a median age of 77 years. Fifty-three lesions were reconstructed with acellular dermal matrices. The most common lesion location was nasal sidewall (50%) with a mean defect size of 10.8 cm 2 . 30.8% underwent same-day acellular dermal matrix reconstruction, with 69.2% undergoing two-stage reconstruction. Acellular dermal matrices successfully reconstructed acquired defects in 94.2% of lesions. Average time to re-epithelialization was 27.6 + 6.2 days. Average time to repigmentation was 145.35 + 86 days. No recurrences were recorded. Total complication rate was 9.62%. Average size for successful healing was 10.8 cm 2 . Average defect size for complication or failure was 14.7 cm 2 . Seven sites (13.46%) underwent aesthetic improvement procedures. CONCLUSION: Acellular bilayer wound matrix is an adequate reconstructive option for single or dual-stage reconstruction of the nose with low complication and revision rates.

18.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33846253

ABSTRACT

DNA hypomethylation is a feature of epidermal cells from aged and sun-exposed skin, but the mechanisms responsible for this methylation loss are not known. Dnmt3a is the dominant de novo DNA methyltransferase in the skin; while epidermal Dnmt3a deficiency creates a premalignant state in which keratinocytes are more easily transformed by topical mutagens, the conditions responsible for this increased susceptibility to transformation are not well understood. Using whole genome bisulfite sequencing, we identified a focal, canonical DNA hypomethylation phenotype in the epidermal cells of Dnmt3a-deficient mice. Single-cell transcriptomic analysis revealed an increased proportion of cells with a proliferative gene expression signature, while other populations in the skin were relatively unchanged. Although total DNMT3A deficiency has not been described in human disease states, rare patients with an overgrowth syndrome associated with behavioral abnormalities and an increased risk of cancer often have heterozygous, germline mutations in DNMT3A that reduce its function (Tatton-Brown Rahman syndrome [TBRS]). We evaluated the DNA methylation phenotype of the skin from a TBRS patient with a germline DNMT3AR882H mutation, which encodes a dominant-negative protein that reduces its methyltransferase function by ∼80%. We detected a focal, canonical hypomethylation phenotype that revealed considerable overlap with hypomethylated regions found in Dnmt3a-deficient mouse skin. Together, these data suggest that DNMT3A loss creates a premalignant epigenetic state associated with a hyperproliferative phenotype in the skin and further suggest that DNMT3A acts as a tumor suppressor in the skin.


Subject(s)
DNA Methylation/physiology , DNA Methyltransferase 3A/genetics , Keratinocytes/metabolism , Abnormalities, Multiple/genetics , Adolescent , Animals , Child , DNA/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methyltransferase 3A/metabolism , DNA Modification Methylases/metabolism , Germ-Line Mutation , Heterozygote , Humans , Intellectual Disability/genetics , Keratinocytes/physiology , Male , Methyltransferases/genetics , Mice , Mutation , Phenotype , Skin/metabolism , Syndrome
19.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845035

ABSTRACT

Acute myeloid leukemia (AML) patients rarely have long first remissions (LFRs; >5 y) after standard-of-care chemotherapy, unless classified as favorable risk at presentation. Identification of the mechanisms responsible for long vs. more typical, standard remissions may help to define prognostic determinants for chemotherapy responses. Using exome sequencing, RNA-sequencing, and functional immunologic studies, we characterized 28 normal karyotype (NK)-AML patients with >5 y first remissions after chemotherapy (LFRs) and compared them to a well-matched group of 31 NK-AML patients who relapsed within 2 y (standard first remissions [SFRs]). Our combined analyses indicated that genetic-risk profiling at presentation (as defined by European LeukemiaNet [ELN] 2017 criteria) was not sufficient to explain the outcomes of many SFR cases. Single-cell RNA-sequencing studies of 15 AML samples showed that SFR AML cells differentially expressed many genes associated with immune suppression. The bone marrow of SFR cases had significantly fewer CD4+ Th1 cells; these T cells expressed an exhaustion signature and were resistant to activation by T cell receptor stimulation in the presence of autologous AML cells. T cell activation could be restored by removing the AML cells or blocking the inhibitory major histocompatibility complex class II receptor, LAG3. Most LFR cases did not display these features, suggesting that their AML cells were not as immunosuppressive. These findings were confirmed and extended in an independent set of 50 AML cases representing all ELN 2017 risk groups. AML cell-mediated suppression of CD4+ T cell activation at presentation is strongly associated with unfavorable outcomes in AML patients treated with standard chemotherapy.


Subject(s)
Immune Tolerance/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , Female , Humans , Immune Tolerance/immunology , Karyotype , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Prognosis , Recurrence , Remission Induction , Risk Factors , Sequence Analysis, RNA/methods , Th1 Cells/immunology , Transcriptome/genetics , Treatment Outcome
20.
Foot Ankle Surg ; 30(2): 150-154, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37951779

ABSTRACT

PURPOSE: This study aimed to evaluate the impact of each burr pass on degree of correction, gap size and calcaneal morphology in MIS Zadek osteotomy. METHODS: MIS Zadek osteotomy was performed on ten cadaveric specimens using a 3.1 mm Shannon burr. After each burr pass, the osteotomy gap was manually closed, and the subsequent burr passes were carried out with the foot held in dorsiflexion, which was repeated five times. Lateral X-rays were taken before and after each burr pass. Two independent reviewers measured the dorsal calcaneal length after each burr passage, as well as changes in several calcaneal parameters including X/Y ratio, Fowler Philip angle, and Böhler angle. RESULTS: The average decrease in dorsal calcaneal cortical length with each burr pass was as follows: 2.6 ± 0.9 mm at the 1st pass, 2.4 ± 1 mm at the 2nd pass, 2 ± 1 mm at the 3rd pass, 1.6 ± 1 mm at the 4th pass, and 1.4 ± 0.7 mm at the 5th pass. The Fowler Philip and Böhler angles consistently decreased while the X/Y ratio consistently increased following each consecutive burr pass. Interobserver reliability analysis demonstrated good agreement for all parameters. CONCLUSION: The results revealed the trends of length and anatomical changes in the calcaneus with each burr pass. On average, a dorsal wedge resection of 10 mm was achieved after 5 burr passes. This data can aid surgeons in determining the optimal number of burr passes required for a particular amount of resection, ensuring the attainment of the desired patient-specific surgical outcome.


Subject(s)
Calcaneus , Humans , Calcaneus/diagnostic imaging , Calcaneus/surgery , Calcaneus/anatomy & histology , Reproducibility of Results , Foot , Radiography , Osteotomy/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL