Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Mol Syst Biol ; 19(5): e11361, 2023 05 09.
Article in English | MEDLINE | ID: mdl-36919946

ABSTRACT

DNA methylation comprises a cumulative record of lifetime exposures superimposed on genetically determined markers. Little is known about methylation dynamics in humans following an acute perturbation, such as infection. We characterized the temporal trajectory of blood epigenetic remodeling in 133 participants in a prospective study of young adults before, during, and after asymptomatic and mildly symptomatic SARS-CoV-2 infection. The differential methylation caused by asymptomatic or mildly symptomatic infections was indistinguishable. While differential gene expression largely returned to baseline levels after the virus became undetectable, some differentially methylated sites persisted for months of follow-up, with a pattern resembling autoimmune or inflammatory disease. We leveraged these responses to construct methylation-based machine learning models that distinguished samples from pre-, during-, and postinfection time periods, and quantitatively predicted the time since infection. The clinical trajectory in the young adults and in a diverse cohort with more severe outcomes was predicted by the similarity of methylation before or early after SARS-CoV-2 infection to the model-defined postinfection state. Unlike the phenomenon of trained immunity, the postacute SARS-CoV-2 epigenetic landscape we identify is antiprotective.


Subject(s)
COVID-19 , Young Adult , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Prospective Studies , DNA Methylation/genetics , Protein Processing, Post-Translational
2.
Epidemiology ; 33(6): 797-807, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35944149

ABSTRACT

BACKGROUND: Marine recruits training at Parris Island experienced an unexpectedly high rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, despite preventive measures including a supervised, 2-week, pre-entry quarantine. We characterize SARS-CoV-2 transmission in this cohort. METHODS: Between May and November 2020, we monitored 2,469 unvaccinated, mostly male, Marine recruits prospectively during basic training. If participants tested negative for SARS-CoV-2 by quantitative polymerase chain reaction (qPCR) at the end of quarantine, they were transferred to the training site in segregated companies and underwent biweekly testing for 6 weeks. We assessed the effects of coronavirus disease 2019 (COVID-19) prevention measures on other respiratory infections with passive surveillance data, performed phylogenetic analysis, and modeled transmission dynamics and testing regimens. RESULTS: Preventive measures were associated with drastically lower rates of other respiratory illnesses. However, among the trainees, 1,107 (44.8%) tested SARS-CoV-2-positive, with either mild or no symptoms. Phylogenetic analysis of viral genomes from 580 participants revealed that all cases but one were linked to five independent introductions, each characterized by accumulation of mutations across and within companies, and similar viral isolates in individuals from the same company. Variation in company transmission rates (mean reproduction number R 0 ; 5.5 [95% confidence interval [CI], 5.0, 6.1]) could be accounted for by multiple initial cases within a company and superspreader events. Simulations indicate that frequent rapid-report testing with case isolation may minimize outbreaks. CONCLUSIONS: Transmission of wild-type SARS-CoV-2 among Marine recruits was approximately twice that seen in the community. Insights from SARS-CoV-2 outbreak dynamics and mutations spread in a remote, congregate setting may inform effective mitigation strategies.


Subject(s)
COVID-19 , Disease Outbreaks , Military Personnel , COVID-19/epidemiology , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Female , Humans , Male , Military Personnel/statistics & numerical data , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , United States/epidemiology
3.
J Biol Chem ; 293(40): 15471-15482, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30126841

ABSTRACT

Recruitment of poliovirus (PV) RNA to the human ribosome requires the coordinated interaction of the viral internal ribosome entry site (IRES) and several host cellular initiation factors and IRES trans-acting factors (ITAFs). Attenuated PV Sabin strains contain point mutations in the PV IRES domain V (dV) that inhibit viral translation. Remarkably, attenuation is most apparent in cells of the central nervous system, but the molecular basis to explain this is poorly understood. The dV contains binding sites for eukaryotic initiation factor 4G (eIF4G) and polypyrimidine tract-binding protein (PTB). Impaired binding of these proteins to the mutant IRESs has been observed, but these effects have not been quantitated. We used a fluorescence anisotropy assay to reveal that the Sabin mutants reduce the equilibrium dissociation constants of eIF4G and PTB to the PV IRES by up to 6-fold. Using the most inhibitory Sabin 3 mutant, we used a real-time fluorescence helicase assay to show that the apparent affinity of an active eIF4G/4A/4B helicase complex for the IRES is reduced by 2.5-fold. The Sabin 3 mutant did not alter the maximum rate of eIF4A-dependent helicase activity, suggesting that this mutant primarily reduces the affinity, rather than activity, of the unwinding complex. To confirm this affinity model of attenuation, we show that eIF4G overexpression in HeLa cells overcomes the attenuation of a Sabin 3 mutant PV-luciferase replicon. Our study provides a quantitative framework for understanding the mechanism of PV Sabin attenuation and provides an explanation for the previously observed cell type-specific translational attenuation.


Subject(s)
Eukaryotic Initiation Factor-4G/genetics , Mutation , Poliovirus Vaccine, Oral/genetics , Poliovirus/genetics , Polypyrimidine Tract-Binding Protein/genetics , Protein Biosynthesis , Animals , Baculoviridae/genetics , Baculoviridae/immunology , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/immunology , Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4A/immunology , Eukaryotic Initiation Factor-4G/immunology , Gene Expression , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HeLa Cells , Humans , Internal Ribosome Entry Sites , Luciferases/genetics , Luciferases/metabolism , Nucleic Acid Conformation , Poliovirus/immunology , Poliovirus Vaccine, Oral/biosynthesis , Poliovirus Vaccine, Oral/immunology , Polypyrimidine Tract-Binding Protein/immunology , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sf9 Cells , Spodoptera , Vaccines, Attenuated
4.
Viruses ; 16(2)2024 01 27.
Article in English | MEDLINE | ID: mdl-38399974

ABSTRACT

Infections caused by acute respiratory viruses induce a systemic innate immune response, which can be measured by the increased levels of expression of inflammatory genes in immune cells. There is growing evidence that these acute viral infections, alongside transient transcriptomic responses, induce epigenetic remodeling as part of the immune response, such as DNA methylation and histone modifications, which might persist after the infection is cleared. In this article, we first review the primary mechanisms of epigenetic remodeling in the context of innate immunity and inflammation, which are crucial for the regulation of the immune response to viral infections. Next, we delve into the existing knowledge concerning the impact of respiratory virus infections on the epigenome, focusing on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Influenza A Virus (IAV), and Respiratory Syncytial Virus (RSV). Finally, we offer perspectives on the potential consequences of virus-induced epigenetic remodeling and open questions in the field that are currently under investigation.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Virus Diseases , Humans , Immunity, Innate , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus, Human/genetics , SARS-CoV-2 , Epigenesis, Genetic
5.
Epigenomics ; 16(14): 1013-1029, 2024.
Article in English | MEDLINE | ID: mdl-39225561

ABSTRACT

Aim: The epigenome influences gene regulation and phenotypes in response to exposures. Epigenome assessment can determine exposure history aiding in diagnosis.Materials & methods: Here we developed and implemented a machine learning algorithm, the exposure signature discovery algorithm (ESDA), to identify the most important features present in multiple epigenomic and transcriptomic datasets to produce an integrated exposure signature (ES).Results: Signatures were developed for seven exposures including Staphylococcus aureus, human immunodeficiency virus, SARS-CoV-2, influenza A (H3N2) virus and Bacillus anthracis vaccinations. ESs differed in the assays and features selected and predictive value.Conclusion: Integrated ESs can potentially be utilized for diagnosis or forensic attribution. The ESDA identifies the most distinguishing features enabling diagnostic panel development for future precision health deployment.


This article introduces ESDA, a new analytic tool for integrating multiple data types to identify the most distinguishing features following an exposure. Using the ESDA, we were able to identify signatures of infectious diseases. The results of the study indicate that integration of multiple types of large datasets can be used to identify distinguishing features for infectious diseases. Understanding the changes from different exposures will enable development of diagnostic tests for infectious diseases that target responses from the patient. Using the ESDA, we will be able to build a database of human response signatures to different infections and simplify diagnostic testing in the future.


Subject(s)
COVID-19 , Epigenomics , Machine Learning , Staphylococcus aureus , Humans , Epigenomics/methods , Staphylococcus aureus/genetics , COVID-19/virology , COVID-19/genetics , SARS-CoV-2/genetics , Epigenome , Influenza A Virus, H3N2 Subtype/genetics , Bacillus anthracis/genetics , Algorithms , Epigenesis, Genetic , Transcriptome , HIV Infections/genetics , Influenza, Human/genetics
6.
Nat Comput Sci ; 3(7): 644-657, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37974651

ABSTRACT

Resolving chromatin-remodeling-linked gene expression changes at cell-type resolution is important for understanding disease states. Here we describe MAGICAL (Multiome Accessibility Gene Integration Calling and Looping), a hierarchical Bayesian approach that leverages paired single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing from different conditions to map disease-associated transcription factors, chromatin sites, and genes as regulatory circuits. By simultaneously modeling signal variation across cells and conditions in both omics data types, MAGICAL achieved high accuracy on circuit inference. We applied MAGICAL to study Staphylococcus aureus sepsis from peripheral blood mononuclear single-cell data that we generated from subjects with bloodstream infection and uninfected controls. MAGICAL identified sepsis-associated regulatory circuits predominantly in CD14 monocytes, known to be activated by bacterial sepsis. We addressed the challenging problem of distinguishing host regulatory circuit responses to methicillin-resistant and methicillin-susceptible S. aureus infections. Although differential expression analysis failed to show predictive value, MAGICAL identified epigenetic circuit biomarkers that distinguished methicillin-resistant from methicillin-susceptible S. aureus infections.

7.
Front Immunol ; 13: 821730, 2022.
Article in English | MEDLINE | ID: mdl-35479098

ABSTRACT

Young adults infected with SARS-CoV-2 are frequently asymptomatic or develop only mild disease. Because capturing representative mild and asymptomatic cases require active surveillance, they are less characterized than moderate or severe cases of COVID-19. However, a better understanding of SARS-CoV-2 asymptomatic infections might shed light into the immune mechanisms associated with the control of symptoms and protection. To this aim, we have determined the temporal dynamics of the humoral immune response, as well as the serum inflammatory profile, of mild and asymptomatic SARS-CoV-2 infections in a cohort of 172 initially seronegative prospectively studied United States Marine recruits, 149 of whom were subsequently found to be SARS-CoV-2 infected. The participants had blood samples taken, symptoms surveyed and PCR tests for SARS-CoV-2 performed periodically for up to 105 days. We found similar dynamics in the profiles of viral load and in the generation of specific antibody responses in asymptomatic and mild symptomatic participants. A proteomic analysis using an inflammatory panel including 92 analytes revealed a pattern of three temporal waves of inflammatory and immunoregulatory mediators, and a return to baseline for most of the inflammatory markers by 35 days post-infection. We found that 23 analytes were significantly higher in those participants that reported symptoms at the time of the first positive SARS-CoV-2 PCR compared with asymptomatic participants, including mostly chemokines and cytokines associated with inflammatory response or immune activation (i.e., TNF-α, TNF-ß, CXCL10, IL-8). Notably, we detected 7 analytes (IL-17C, MMP-10, FGF-19, FGF-21, FGF-23, CXCL5 and CCL23) that were higher in asymptomatic participants than in participants with symptoms; these are known to be involved in tissue repair and may be related to the control of symptoms. Overall, we found a serum proteomic signature that differentiates asymptomatic and mild symptomatic infections in young adults, including potential targets for developing new therapies and prognostic tests.


Subject(s)
COVID-19 , Fibroblast Growth Factors , Humans , Interleukin-17 , Matrix Metalloproteinase 10 , Proteomics , SARS-CoV-2
8.
Cell Syst ; 13(11): 924-931.e4, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36323307

ABSTRACT

Male sex is a major risk factor for SARS-CoV-2 infection severity. To understand the basis for this sex difference, we studied SARS-CoV-2 infection in a young adult cohort of United States Marine recruits. Among 2,641 male and 244 female unvaccinated and seronegative recruits studied longitudinally, SARS-CoV-2 infections occurred in 1,033 males and 137 females. We identified sex differences in symptoms, viral load, blood transcriptome, RNA splicing, and proteomic signatures. Females had higher pre-infection expression of antiviral interferon-stimulated gene (ISG) programs. Causal mediation analysis implicated ISG differences in number of symptoms, levels of ISGs, and differential splicing of CD45 lymphocyte phosphatase during infection. Our results indicate that the antiviral innate immunity set point causally contributes to sex differences in response to SARS-CoV-2 infection. A record of this paper's transparent peer review process is included in the supplemental information.


Subject(s)
COVID-19 , Immunity, Innate , Sex Characteristics , Female , Humans , Male , Young Adult , COVID-19/immunology , Interferons , Proteomics , SARS-CoV-2
9.
Wiley Interdiscip Rev RNA ; 12(2): e1613, 2021 03.
Article in English | MEDLINE | ID: mdl-32657002

ABSTRACT

Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.


Subject(s)
Protein Biosynthesis , Ribosomal Proteins , Virus Physiological Phenomena , RNA, Viral/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Viral Proteins/genetics , Viruses
10.
Lancet Respir Med ; 9(7): 712-720, 2021 07.
Article in English | MEDLINE | ID: mdl-33865504

ABSTRACT

BACKGROUND: Whether young adults who are infected with SARS-CoV-2 are at risk of subsequent infection is uncertain. We investigated the risk of subsequent SARS-CoV-2 infection among young adults seropositive for a previous infection. METHODS: This analysis was performed as part of the prospective COVID-19 Health Action Response for Marines study (CHARM). CHARM included predominantly male US Marine recruits, aged 18-20 years, following a 2-week unsupervised quarantine at home. After the home quarantine period, upon arrival at a Marine-supervised 2-week quarantine facility (college campus or hotel), participants were enrolled and were assessed for baseline SARS-CoV-2 IgG seropositivity, defined as a dilution of 1:150 or more on receptor-binding domain and full-length spike protein ELISA. Participants also completed a questionnaire consisting of demographic information, risk factors, reporting of 14 specific COVID-19-related symptoms or any other unspecified symptom, and brief medical history. SARS-CoV-2 infection was assessed by PCR at weeks 0, 1, and 2 of quarantine and participants completed a follow-up questionnaire, which included questions about the same COVID-19-related symptoms since the last study visit. Participants were excluded at this stage if they had a positive PCR test during quarantine. Participants who had three negative swab PCR results during quarantine and a baseline serum serology test at the beginning of the supervised quarantine that identified them as seronegative or seropositive for SARS-CoV-2 then went on to basic training at Marine Corps Recruit Depot-Parris Island. Three PCR tests were done at weeks 2, 4, and 6 in both seropositive and seronegative groups, along with the follow-up symptom questionnaire and baseline neutralising antibody titres on all subsequently infected seropositive and selected seropositive uninfected participants (prospective study period). FINDINGS: Between May 11, 2020, and Nov 2, 2020, we enrolled 3249 participants, of whom 3168 (98%) continued into the 2-week quarantine period. 3076 (95%) participants, 2825 (92%) of whom were men, were then followed up during the prospective study period after quarantine for 6 weeks. Among 189 seropositive participants, 19 (10%) had at least one positive PCR test for SARS-CoV-2 during the 6-week follow-up (1·1 cases per person-year). In contrast, 1079 (48%) of 2247 seronegative participants tested positive (6·2 cases per person-year). The incidence rate ratio was 0·18 (95% CI 0·11-0·28; p<0·001). Among seropositive recruits, infection was more likely with lower baseline full-length spike protein IgG titres than in those with higher baseline full-length spike protein IgG titres (hazard ratio 0·45 [95% CI 0·32-0·65]; p<0·001). Infected seropositive participants had viral loads that were about 10-times lower than those of infected seronegative participants (ORF1ab gene cycle threshold difference 3·95 [95% CI 1·23-6·67]; p=0·004). Among seropositive participants, baseline neutralising titres were detected in 45 (83%) of 54 uninfected and in six (32%) of 19 infected participants during the 6 weeks of observation (ID50 difference p<0·0001). INTERPRETATION: Seropositive young adults had about one-fifth the risk of subsequent infection compared with seronegative individuals. Although antibodies induced by initial infection are largely protective, they do not guarantee effective SARS-CoV-2 neutralisation activity or immunity against subsequent infection. These findings might be relevant for optimisation of mass vaccination strategies. FUNDING: Defense Health Agency and Defense Advanced Research Projects Agency.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , COVID-19/epidemiology , SARS-CoV-2/immunology , Adolescent , COVID-19/diagnosis , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Male , Prospective Studies , Quarantine , Risk Assessment , Young Adult
11.
Virology ; 545: 53-62, 2020 06.
Article in English | MEDLINE | ID: mdl-32308198

ABSTRACT

Viruses have evolved strategies to ensure efficient translation using host cell ribosomes and translation factors. In addition to cleaving translation initiation factors required for host cell translation, poliovirus (PV) uses an internal ribosome entry site (IRES). Recent studies suggest that viruses exploit specific ribosomal proteins to enhance translation of their viral proteins. The ribosomal protein receptor for activated C kinase 1 (RACK1), a protein of the 40S ribosomal subunit, was previously shown to mediate translation from the 5' cricket paralysis virus and hepatitis C virus IRESs. Here we found that translation of a PV dual-luciferase reporter shows a moderate dependence on RACK1. However, in the context of a viral infection we observed significantly reduced poliovirus plaque size and titers and delayed host cell translational shut-off. Our findings further illustrate the involvement of the cellular translational machinery during PV infection and how viruses usurp the function of specific ribosomal proteins.


Subject(s)
Hepacivirus/genetics , Hepatitis C/metabolism , Internal Ribosome Entry Sites , Poliomyelitis/metabolism , Poliovirus/genetics , Receptors for Activated C Kinase/metabolism , Hepacivirus/metabolism , Hepatitis C/genetics , Hepatitis C/virology , Host-Pathogen Interactions , Humans , Poliomyelitis/genetics , Poliomyelitis/virology , Poliovirus/metabolism , Protein Biosynthesis , Receptors for Activated C Kinase/genetics , Ribosomes/genetics , Ribosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL