Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Geophys Res Lett ; 44(19): 10006-10016, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-32943801

ABSTRACT

Dust influences the Indian summer monsoon on seasonal timescales by perturbing atmospheric radiation. On weekly time scales, aerosol optical depth retrieved by satellite over the Arabian Sea is correlated with Indian monsoon precipitation. This has been interpreted to show the effect of dust radiative heating on Indian rainfall on synoptic (few-day) time scales. However, this correlation is reproduced by Earth System Model simulations, where dust is present but its radiative effect is omitted. Analysis of daily variability suggests that the correlation results from the effect of precipitation on dust through the associated cyclonic circulation. Boundary layer winds that deliver moisture to India are responsible for dust outbreaks in source regions far upwind, including the Arabian Peninsula. This suggests that synoptic variations in monsoon precipitation over India enhance dust emission and transport to the Arabian Sea. The effect of dust radiative heating upon synoptic monsoon variations remains to be determined.

2.
Geophys Res Lett ; 43(19): 10520-10529, 2016 Oct 16.
Article in English | MEDLINE | ID: mdl-32692319

ABSTRACT

Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izaña Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models.

3.
Proc Natl Acad Sci U S A ; 106(13): 4997-5001, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19289836

ABSTRACT

The "Dust Bowl" drought of the 1930s was highly unusual for North America, deviating from the typical pattern forced by "La Nina" with the maximum drying in the central and northern Plains, warm temperature anomalies across almost the entire continent, and widespread dust storms. General circulation models (GCMs), forced by sea surface temperatures (SSTs) from the 1930s, produce a drought, but one that is centered in southwestern North America and without the warming centered in the middle of the continent. Here, we show that the inclusion of forcing from human land degradation during the period, in addition to the anomalous SSTs, is necessary to reproduce the anomalous features of the Dust Bowl drought. The degradation over the Great Plains is represented in the GCM as a reduction in vegetation cover and the addition of a soil dust aerosol source, both consequences of crop failure. As a result of land surface feedbacks, the simulation of the drought is much improved when the new dust aerosol and vegetation boundary conditions are included. Vegetation reductions explain the high temperature anomaly over the northern U.S., and the dust aerosols intensify the drought and move it northward of the purely ocean-forced drought pattern. When both factors are included in the model simulations, the precipitation and temperature anomalies are of similar magnitude and in a similar location compared with the observations. Human-induced land degradation is likely to have not only contributed to the dust storms of the 1930s but also amplified the drought, and these together turned a modest SST-forced drought into one of the worst environmental disasters the U.S. has experienced.


Subject(s)
Agriculture , Computer Simulation , Disasters , Droughts , Dust , Agriculture/trends , Disasters/history , Droughts/history , Environment , History, 20th Century , Humans , North America
4.
Atmos Chem Phys ; 21(10): 8127-8167, 2021.
Article in English | MEDLINE | ID: mdl-37649640

ABSTRACT

Even though desert dust is the most abundant aerosol by mass in Earth's atmosphere, atmospheric models struggle to accurately represent its spatial and temporal distribution. These model errors are partially caused by fundamental difficulties in simulating dust emission in coarse-resolution models and in accurately representing dust microphysical properties. Here we mitigate these problems by developing a new methodology that yields an improved representation of the global dust cycle. We present an analytical framework that uses inverse modeling to integrate an ensemble of global model simulations with observational constraints on the dust size distribution, extinction efficiency, and regional dust aerosol optical depth. We then compare the inverse model results against independent measurements of dust surface concentration and deposition flux and find that errors are reduced by approximately a factor of two relative to current model simulations of the Northern Hemisphere dust cycle. The inverse model results show smaller improvements in the less dusty Southern Hemisphere, most likely because both the model simulations and the observational constraints used in the inverse model are less accurate. On a global basis, we find that the emission flux of dust with geometric diameter up to 20 µm (PM20) is approximately 5,000 Tg/year, which is greater than most models account for. This larger PM20 dust flux is needed to match observational constraints showing a large atmospheric loading of coarse dust. We obtain gridded data sets of dust emission, vertically integrated loading, dust aerosol optical depth, (surface) concentration, and wet and dry deposition fluxes that are resolved by season and particle size. As our results indicate that this data set is more accurate than current model simulations and the MERRA-2 dust reanalysis product, it can be used to improve quantifications of dust impacts on the Earth system.

5.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999704

ABSTRACT

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

6.
Nat Geosci ; 10: 274-278, 2017.
Article in English | MEDLINE | ID: mdl-32747861

ABSTRACT

Desert dust aerosols affect Earth's global energy balance through interactions with radiation1,2, clouds3,4, and ecosystems5. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate1,4,6. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change4,7-9, and the climate impact of possible future alterations in dust loading is similarly disputed9,10. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the ~0.4 W/m2 estimated by models in a current ensemble2,11-13. We constrain the dust DRE to - 0.20 (-0.48 to +0.20) W/m2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

7.
Environ Health Perspect ; 122(7): 679-86, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24633049

ABSTRACT

BACKGROUND: Epidemics of meningococcal meningitis are concentrated in sub-Saharan Africa during the dry season, a period when the region is affected by the Harmattan, a dry and dusty northeasterly trade wind blowing from the Sahara into the Gulf of Guinea. OBJECTIVES: We examined the potential of climate-based statistical forecasting models to predict seasonal incidence of meningitis in Niger at both the national and district levels. DATA AND METHODS: We used time series of meningitis incidence from 1986 through 2006 for 38 districts in Niger. We tested models based on data that would be readily available in an operational framework, such as climate and dust, population, and the incidence of early cases before the onset of the meningitis season in January-May. Incidence was used as a proxy for immunological state, susceptibility, and carriage in the population. We compared a range of negative binomial generalized linear models fitted to the meningitis data. RESULTS: At the national level, a model using early incidence in December and averaged November-December zonal wind provided the best fit (pseudo-R2 = 0.57), with zonal wind having the greatest impact. A model with surface dust concentration as a predictive variable performed indistinguishably well. At the district level, the best spatiotemporal model included zonal wind, dust concentration, early incidence in December, and population density (pseudo-R2 = 0.41). CONCLUSIONS: We showed that wind and dust information and incidence in the early dry season predict part of the year-to-year variability of the seasonal incidence of meningitis at both national and district levels in Niger. Models of this form could provide an early-season alert that wind, dust, and other conditions are potentially conducive to an epidemic.


Subject(s)
Aerosols/analysis , Climate , Dust/analysis , Meningitis, Meningococcal/epidemiology , Forecasting , Humans , Incidence , Linear Models , Meningitis, Meningococcal/microbiology , Models, Statistical , Niger/epidemiology , Seasons , Soil , Wind
SELECTION OF CITATIONS
SEARCH DETAIL