Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Publication year range
1.
BMC Med ; 20(1): 80, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35177062

ABSTRACT

BACKGROUND: In countries with high COVID-19 vaccination rates the SARS-CoV-2 Delta variant resulted in rapidly increasing case numbers. This study evaluated the use of non-pharmaceutical interventions (NPIs) coupled with alternative vaccination strategies to determine feasible Delta mitigation strategies for Australia. We aimed to understand the potential effectiveness of high vaccine coverage levels together with NPI physical distancing activation and to establish the benefit of adding children and adolescents to the vaccination program. Border closure limited SARS-CoV-2 transmission in Australia; however, slow vaccination uptake resulted in Delta outbreaks in the two largest cities and may continue as international travel increases. METHODS: An agent-based model was used to evaluate the potential reduction in the COVID-19 health burden resulting from alternative vaccination strategies. We assumed immunity was derived from vaccination with the BNT162b2 Pfizer BioNTech vaccine. Two age-specific vaccination strategies were evaluated, ages 5 and above, and 12 and above, and the health burden determined under alternative vaccine coverages, with/without activation of NPIs. Age-specific infections generated by the model, together with recent UK data, permitted reductions in the health burden to be quantified. RESULTS: Cases, hospitalisations and deaths are shown to reduce by (i) increasing coverage to include children aged 5 to 11 years, (ii) activating moderate NPI measures and/or (iii) increasing coverage levels above 80%. At 80% coverage, vaccinating ages 12 and above without NPIs is predicted to result in 1095 additional hospitalisations per million population; adding ages 5 and above reduces this to 996 per million population. Activating moderate NPIs reduces hospitalisations to 611 for ages 12 and over, and 382 per million for ages 5 and above. Alternatively, increasing coverage to 90% for those aged 12 and above is estimated to reduce hospitalisations to 616. Combining all three measures is shown to reduce cases to 158, hospitalisations to 1 and deaths to zero, per million population. CONCLUSIONS: Delta variant outbreaks may be managed by vaccine coverage rates higher than 80% and activation of moderate NPI measures, preventing healthcare facilities from being overwhelmed. If 90% coverage cannot be achieved, including young children and adolescents in the vaccination program coupled with activation of moderate NPIs appears necessary to suppress future COVID-19 Delta-like transmission and prevent intensive care unit surge capacity from being exceeded.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Australia/epidemiology , BNT162 Vaccine , COVID-19 Vaccines , Child , Child, Preschool , Cost of Illness , Humans , Vaccination
2.
Health Mark Q ; 34(1): 62-79, 2017.
Article in English | MEDLINE | ID: mdl-28350277

ABSTRACT

It has been observed that subjective age (SA) often trails chronological age, especially in older adults. In a previously published article, we argued that differences in individual's SA is a function of their level of activity on biological, mental, and social dimensions. This article empirically tests this proposition using a newly created Subjective Aging Index (SAI). The SAI is related to SA above the effect of age with differences existing across age groups and sex. The findings contribute to the literature on successful aging strategies with important implications for health care practitioners, marketers, and individuals heading towards older adult years.


Subject(s)
Aging , Health Behavior , Health Status , Adult , Aged , Female , Humans , Life Style , Male , Middle Aged
3.
PLoS Med ; 13(11): e1002181, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27898668

ABSTRACT

BACKGROUND: Large Phase III trials across Asia and Latin America have recently demonstrated the efficacy of a recombinant, live-attenuated dengue vaccine (Dengvaxia) over the first 25 mo following vaccination. Subsequent data collected in the longer-term follow-up phase, however, have raised concerns about a potential increase in hospitalization risk of subsequent dengue infections, in particular among young, dengue-naïve vaccinees. We here report predictions from eight independent modelling groups on the long-term safety, public health impact, and cost-effectiveness of routine vaccination with Dengvaxia in a range of transmission settings, as characterised by seroprevalence levels among 9-y-olds (SP9). These predictions were conducted for the World Health Organization to inform their recommendations on optimal use of this vaccine. METHODS AND FINDINGS: The models adopted, with small variations, a parsimonious vaccine mode of action that was able to reproduce quantitative features of the observed trial data. The adopted mode of action assumed that vaccination, similarly to natural infection, induces transient, heterologous protection and, further, establishes a long-lasting immunogenic memory, which determines disease severity of subsequent infections. The default vaccination policy considered was routine vaccination of 9-y-old children in a three-dose schedule at 80% coverage. The outcomes examined were the impact of vaccination on infections, symptomatic dengue, hospitalised dengue, deaths, and cost-effectiveness over a 30-y postvaccination period. Case definitions were chosen in accordance with the Phase III trials. All models predicted that in settings with moderate to high dengue endemicity (SP9 ≥ 50%), the default vaccination policy would reduce the burden of dengue disease for the population by 6%-25% (all simulations: -3%-34%) and in high-transmission settings (SP9 ≥ 70%) by 13%-25% (all simulations: 10%- 34%). These endemicity levels are representative of the participating sites in both Phase III trials. In contrast, in settings with low transmission intensity (SP9 ≤ 30%), the models predicted that vaccination could lead to a substantial increase in hospitalisation because of dengue. Modelling reduced vaccine coverage or the addition of catch-up campaigns showed that the impact of vaccination scaled approximately linearly with the number of people vaccinated. In assessing the optimal age of vaccination, we found that targeting older children could increase the net benefit of vaccination in settings with moderate transmission intensity (SP9 = 50%). Overall, vaccination was predicted to be potentially cost-effective in most endemic settings if priced competitively. The results are based on the assumption that the vaccine acts similarly to natural infection. This assumption is consistent with the available trial results but cannot be directly validated in the absence of additional data. Furthermore, uncertainties remain regarding the level of protection provided against disease versus infection and the rate at which vaccine-induced protection declines. CONCLUSIONS: Dengvaxia has the potential to reduce the burden of dengue disease in areas of moderate to high dengue endemicity. However, the potential risks of vaccination in areas with limited exposure to dengue as well as the local costs and benefits of routine vaccination are important considerations for the inclusion of Dengvaxia into existing immunisation programmes. These results were important inputs into WHO global policy for use of this licensed dengue vaccine.


Subject(s)
Dengue Vaccines/economics , Dengue Vaccines/standards , Models, Theoretical , Public Health , Safety , Vaccination/methods , Child , Cost-Benefit Analysis , Dengue Vaccines/adverse effects , Humans , Seroepidemiologic Studies , Vaccination/adverse effects , Vaccination/economics , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/economics , Vaccines, Attenuated/standards , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/economics , Vaccines, Synthetic/standards
4.
BMC Infect Dis ; 14: 266, 2014 May 16.
Article in English | MEDLINE | ID: mdl-24884470

ABSTRACT

BACKGROUND: A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. A pre-pandemic vaccine, although probably having lower efficacy, could be produced and used pre-emptively. While several previous studies have investigated the cost effectiveness of pre-emptive vaccination strategies, they have not been directly compared to realistic reactive vaccination strategies. METHODS: An individual-based simulation model of ~30,000 people was used to examine a pre-emptive vaccination strategy, assuming vaccination conducted prior to a pandemic using a low-efficacy vaccine. A reactive vaccination strategy, assuming a 6-month delay between pandemic emergence and availability of a high-efficacy vaccine, was also modelled. Social distancing and antiviral interventions were examined in combination with these alternative vaccination strategies. Moderate and severe pandemics were examined, based on estimates of transmissibility and clinical severity of the 1957 and 1918 pandemics respectively, and the cost effectiveness of each strategy was evaluated. RESULTS: Provided that a pre-pandemic vaccine achieved at least 30% efficacy, pre-emptive vaccination strategies were found to be more cost effective when compared to reactive vaccination strategies. Reactive vaccination coupled with sustained social distancing and antiviral interventions was found to be as effective at saving lives as pre-emptive vaccination coupled with limited duration social distancing and antiviral use, with both strategies saving approximately 420 life-years per 10,000 population for a moderate pandemic with a basic reproduction number of 1.9 and case fatality rate of 0.25%. Reactive vaccination was however more costly due to larger productivity losses incurred by sustained social distancing, costing $8 million per 10,000 population ($19,074/LYS) versus $6.8 million per 10,000 population ($15,897/LYS) for a pre-emptive vaccination strategy. Similar trends were observed for severe pandemics. CONCLUSIONS: Compared to reactive vaccination, pre-emptive strategies would be more effective and more cost effective, conditional on the pre-pandemic vaccine being able to achieve a certain level of coverage and efficacy. Reactive vaccination strategies exist which are as effective at mortality reduction as pre-emptive strategies, though they are less cost effective.


Subject(s)
Influenza Vaccines/economics , Influenza, Human/prevention & control , Models, Economic , Pandemics/prevention & control , Vaccination/economics , Antiviral Agents/therapeutic use , Basic Reproduction Number , Cost-Benefit Analysis , Costs and Cost Analysis , Humans , Influenza, Human/epidemiology , Models, Theoretical , Psychological Distance
5.
BMC Infect Dis ; 14: 447, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25139524

ABSTRACT

BACKGROUND: The World Health Organization estimates that the global number of dengue infections range between 80-100 million per year, with some studies estimating approximately three times higher numbers. Furthermore, the geographic range of dengue virus transmission is extending with the disease now occurring more frequently in areas such as southern Europe. Ae. aegypti, one of the most prominent dengue vectors, is endemic to the far north-east of Australia and the city of Cairns frequently experiences dengue outbreaks which sometimes lead to large epidemics. METHOD: A spatially-explicit, individual-based mathematical model that accounts for the spread of dengue infection as a result of human movement and mosquito dispersion is presented. The model closely couples the four key sub-models necessary for representing the overall dynamics of the physical system, namely those describing mosquito population dynamics, human movement, virus transmission and vector control. Important features are the use of high quality outbreak data and mosquito trapping data for calibration and validation and a strategy to derive local mosquito abundance based on vegetation coverage and census data. RESULTS: The model has been calibrated using detailed 2003 dengue outbreak data from Cairns, together with census and mosquito trapping data, and is shown to realistically reproduce a further dengue outbreak. The simulation results replicating the 2008/2009 Cairns epidemic support several hypotheses (formulated previously) aimed at explaining the large-scale epidemic which occurred in 2008/2009; specifically, while warmer weather and increased human movement had only a small effect on the spread of the virus, a shorter virus strain-specific extrinsic incubation time can explain the observed explosive outbreak of 2008/2009. CONCLUSION: The proof-of-concept simulation model described in this study has potential as a tool for understanding factors contributing to dengue spread as well as planning and optimizing dengue control, including reducing the Ae. aegypti vector population and for estimating the effectiveness and cost-effectiveness of future vaccination programmes. This model could also be applied to other vector borne viral diseases such as chikungunya, also spread by Ae. aegypti and, by re-parameterisation of the vector sub-model, to dengue and chikungunya viruses spread by Aedes albopictus.


Subject(s)
Dengue Virus/physiology , Dengue/transmission , Aedes/growth & development , Aedes/virology , Animals , Australia/epidemiology , Dengue/epidemiology , Dengue/virology , Dengue Virus/isolation & purification , Disease Outbreaks , Europe/epidemiology , Humans , Insect Vectors/virology , Models, Theoretical , Urban Health , Weather
6.
Health Mark Q ; 31(4): 383-98, 2014.
Article in English | MEDLINE | ID: mdl-25405637

ABSTRACT

This article develops a new model for understanding the aging experience. Drawing upon aging literature from the chronological, biological, mental, and social aging perspectives, the model offered is an integrated perspective that provides better understanding of the relationship between chronological age and an individual's perceived age. The article provides evidence of ways that consumers are trying to "time bend" and change today's perceived reality of aging. The article concludes with a discussion of implications for the health care industry and provides examples of how some businesses seem to already be looking at aging and health related issues through this lens.


Subject(s)
Aging/psychology , Health Behavior , Models, Psychological , Age Factors , Aged , Aged, 80 and over , Cohort Effect , Exercise , Female , Health Promotion , Health Status , Humans , Male , Middle Aged , Models, Biological
7.
Emerg Themes Epidemiol ; 10(1): 3, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23651557

ABSTRACT

BACKGROUND: The volume of influenza pandemic modelling studies has increased dramatically in the last decade. Many models incorporate now sophisticated parameterization and validation techniques, economic analyses and the behaviour of individuals. METHODS: We reviewed trends in these aspects in models for influenza pandemic preparedness that aimed to generate policy insights for epidemic management and were published from 2000 to September 2011, i.e. before and after the 2009 pandemic. RESULTS: We find that many influenza pandemics models rely on parameters from previous modelling studies, models are rarely validated using observed data and are seldom applied to low-income countries. Mechanisms for international data sharing would be necessary to facilitate a wider adoption of model validation. The variety of modelling decisions makes it difficult to compare and evaluate models systematically. CONCLUSIONS: We propose a model Characteristics, Construction, Parameterization and Validation aspects protocol (CCPV protocol) to contribute to the systematisation of the reporting of models with an emphasis on the incorporation of economic aspects and host behaviour. Model reporting, as already exists in many other fields of modelling, would increase confidence in model results, and transparency in their assessment and comparison.

8.
BMC Infect Dis ; 13: 81, 2013 Feb 11.
Article in English | MEDLINE | ID: mdl-23398722

ABSTRACT

BACKGROUND: A critical issue in planning pandemic influenza mitigation strategies is the delay between the arrival of the pandemic in a community and the availability of an effective vaccine. The likely scenario, born out in the 2009 pandemic, is that a newly emerged influenza pandemic will have spread to most parts of the world before a vaccine matched to the pandemic strain is produced. For a severe pandemic, additional rapidly activated intervention measures will be required if high mortality rates are to be avoided. METHODS: A simulation modelling study was conducted to examine the effectiveness and cost effectiveness of plausible combinations of social distancing, antiviral and vaccination interventions, assuming a delay of 6-months between arrival of an influenza pandemic and first availability of a vaccine. Three different pandemic scenarios were examined; mild, moderate and extreme, based on estimates of transmissibility and pathogenicity of the 2009, 1957 and 1918 influenza pandemics respectively. A range of different durations of social distancing were examined, and the sensitivity of the results to variation in the vaccination delay, ranging from 2 to 6 months, was analysed. RESULTS: Vaccination-only strategies were not cost effective for any pandemic scenario, saving few lives and incurring substantial vaccination costs. Vaccination coupled with long duration social distancing, antiviral treatment and antiviral prophylaxis was cost effective for moderate pandemics and extreme pandemics, where it saved lives while simultaneously reducing the total pandemic cost. Combined social distancing and antiviral interventions without vaccination were significantly less effective, since without vaccination a resurgence in case numbers occurred as soon as social distancing interventions were relaxed. When social distancing interventions were continued until at least the start of the vaccination campaign, attack rates and total costs were significantly lower, and increased rates of vaccination further improved effectiveness and cost effectiveness. CONCLUSIONS: The effectiveness and cost effectiveness consequences of the time-critical interplay of pandemic dynamics, vaccine availability and intervention timing has been quantified. For moderate and extreme pandemics, vaccination combined with rapidly activated antiviral and social distancing interventions of sufficient duration is cost effective from the perspective of life years saved.


Subject(s)
Communicable Disease Control/methods , Influenza Vaccines/supply & distribution , Influenza, Human/prevention & control , Pandemics/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Communicable Disease Control/economics , Cost-Benefit Analysis , Female , Humans , Infant , Infant, Newborn , Influenza Vaccines/administration & dosage , Influenza Vaccines/economics , Male , Middle Aged , Time Factors , Young Adult
9.
BMC Public Health ; 13: 211, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23496898

ABSTRACT

BACKGROUND: The threat of emergence of a human-to-human transmissible strain of highly pathogenic influenza A(H5N1) is very real, and is reinforced by recent results showing that genetically modified A(H5N1) may be readily transmitted between ferrets. Public health authorities are hesitant in introducing social distancing interventions due to societal disruption and productivity losses. This study estimates the effectiveness and total cost (from a societal perspective, with a lifespan time horizon) of a comprehensive range of social distancing and antiviral drug strategies, under a range of pandemic severity categories. METHODS: An economic analysis was conducted using a simulation model of a community of ~30,000 in Australia. Data from the 2009 pandemic was used to derive relationships between the Case Fatality Rate (CFR) and hospitalization rates for each of five pandemic severity categories, with CFR ranging from 0.1% to 2.5%. RESULTS: For a pandemic with basic reproduction number R0 = 1.8, adopting no interventions resulted in total costs ranging from $441 per person for a pandemic at category 1 (CFR 0.1%) to $8,550 per person at category 5 (CFR 2.5%). For severe pandemics of category 3 (CFR 0.75%) and greater, a strategy combining antiviral treatment and prophylaxis, extended school closure and community contact reduction resulted in the lowest total cost of any strategy, costing $1,584 per person at category 5. This strategy was highly effective, reducing the attack rate to 5%. With low severity pandemics costs are dominated by productivity losses due to illness and social distancing interventions, whereas higher severity pandemic costs are dominated by healthcare costs and costs arising from productivity losses due to death. CONCLUSIONS: For pandemics in high severity categories the strategies with the lowest total cost to society involve rigorous, sustained social distancing, which are considered unacceptable for low severity pandemics due to societal disruption and cost.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza, Human/economics , Influenza, Human/prevention & control , Pandemics/economics , Pandemics/prevention & control , Antiviral Agents/economics , Australia/epidemiology , Computer Simulation , Cost of Illness , Hospitalization/statistics & numerical data , Humans , Influenza, Human/epidemiology , Models, Economic , Mortality , Psychological Distance , Severity of Illness Index
10.
Int J Epidemiol ; 51(2): 458-467, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34333637

ABSTRACT

BACKGROUND: Influenza is the most common vaccine-preventable disease in Australia, causing significant morbidity and mortality. We assessed the burden of influenza across all ages in terms of influenza-associated mortality and hospitalizations using national mortality, hospital-discharge and influenza surveillance data. METHODS: Influenza-associated excess respiratory mortality and hospitalization rates from 2007 to 2015 were estimated using generalized additive models with a proxy of influenza activity based on syndromic and laboratory surveillance data. Estimates were made for each age group and year. RESULTS: The estimated mean annual influenza-associated excess respiratory mortality was 2.6 per 100 000 population [95% confidence interval (CI): 1.8, 3.4 per 100 000 population]. The excess annual respiratory hospitalization rate was 57.4 per 100 000 population (95% CI: 32.5, 82.2 per 100 000 population). The highest mortality rates were observed among those aged ≥75 years (35.11 per 100 000 population; 95% CI: 19.93, 50.29 per 100 000 population) and hospitalization rates were also highest among older adults aged ≥75 years (302.95 per 100 000 population; 95% CI: 144.71, 461.19 per 100 000 population), as well as children aged <6 months (164.02 per 100 000 population; 95% CI: -34.84, 362.88 per 100 000 population). Annual variation was apparent, ranging from 1.0 to 3.9 per 100 000 population for mortality and 24.2 to 94.28 per 100 000 population for hospitalizations. Influenza A contributed to almost 80% of the average excess respiratory hospitalizations and 60% of the average excess respiratory deaths. CONCLUSIONS: Influenza causes considerable burden to all Australians. Expected variation was observed among age groups, years and influenza type, with the greatest burden falling to older adults and young children. Understanding the current burden is useful for understanding the potential impact of mitigation strategies, such as vaccination.


Subject(s)
Influenza Vaccines , Influenza, Human , Aged , Australia/epidemiology , Hospitalization , Humans , Infant , Influenza, Human/complications , Vaccination
11.
Sci Rep ; 11(1): 11958, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099788

ABSTRACT

There is a significant challenge in responding to second waves of COVID-19 cases, with governments being hesitant in introducing hard lockdown measures given the resulting economic impact. In addition, rising case numbers reflect an increase in coronavirus transmission some time previously, so timing of response measures is highly important. Australia experienced a second wave from June 2020 onwards, confined to greater Melbourne, with initial social distancing measures failing to reduce rapidly increasing case numbers. We conducted a detailed analysis of this outbreak, together with an evaluation of the effectiveness of alternative response strategies, to provide guidance to countries experiencing second waves of SARS-Cov-2 transmission. An individual-based transmission model was used to (1) describe a second-wave COVID-19 epidemic in Australia; (2) evaluate the impact of lockdown strategies used; and (3) evaluate effectiveness of alternative mitigation strategies. The model was calibrated using daily diagnosed case data prior to lockdown. Specific social distancing interventions were modelled by adjusting person-to-person contacts in mixing locations. Modelling earlier activation of lockdown measures are predicted to reduce total case numbers by more than 50%. Epidemic peaks and duration of the second wave were also shown to reduce. Our results suggest that activating lockdown measures when second-wave case numbers first indicated exponential growth, would have been highly effective in reducing COVID-19 cases. The model was shown to realistically predict the epidemic growth rate under the social distancing measures applied, validating the methods applied. The timing of social distancing activation is shown to be critical to their effectiveness. Data showing exponential rise in cases, doubling every 7-10 days, can be used to trigger early lockdown measures. Such measures are shown to be necessary to reduce daily and total case numbers, and the consequential health burden, so preventing health care facilities being overwhelmed. Early control of second wave resurgence potentially permits strict lockdown measures to be eased earlier.


Subject(s)
COVID-19/diagnosis , Communicable Disease Control , Disease Outbreaks/prevention & control , SARS-CoV-2/pathogenicity , Australia , COVID-19/therapy , COVID-19/virology , Communicable Disease Control/methods , Epidemics , Humans , Physical Distancing
12.
BMC Infect Dis ; 10: 221, 2010 Jul 27.
Article in English | MEDLINE | ID: mdl-20659348

ABSTRACT

BACKGROUND: The A/H1N1 2009 influenza pandemic revealed that operational issues of school closure interventions, such as when school closure should be initiated (activation trigger), how long schools should be closed (duration) and what type of school closure should be adopted, varied greatly between and within countries. Computer simulation can be used to examine school closure intervention strategies in order to inform public health authorities as they refine school closure guidelines in light of experience with the A/H1N1 2009 pandemic. METHODS: An individual-based simulation model was used to investigate the effectiveness of school closure interventions for influenza pandemics with R0 of 1.5, 2.0 and 2.5. The effectiveness of individual school closure and simultaneous school closure were analyzed for 2, 4 and 8 weeks closure duration, with a daily diagnosed case based intervention activation trigger scheme. The effectiveness of combining antiviral drug treatment and household prophyaxis with school closure was also investigated. RESULTS: Illness attack rate was reduced from 33% to 19% (14% reduction in overall attack rate) by 8 weeks school closure activating at 30 daily diagnosed cases in the community for an influenza pandemic with R0 = 1.5; when combined with antivirals a 19% (from 33% to 14%) reduction in attack rate was obtained. For R(0) > or = 2.0, school closure would be less effective. An 8 weeks school closure strategy gives 9% (from 50% to 41%) and 4% (from 59% to 55%) reduction in attack rate for R(0) = 2.0 and 2.5 respectively; however, school closure plus antivirals would give a significant reduction (approximately 15%) in over all attack rate. The results also suggest that an individual school closure strategy would be more effective than simultaneous school closure. CONCLUSIONS: Our results indicate that the particular school closure strategy to be adopted depends both on the disease severity, which will determine the duration of school closure deemed acceptable, and its transmissibility. For epidemics with a low transmissibility (R(0) < 2.0) and/or mild severity, individual school closures should begin once a daily community case count is exceeded. For a severe, highly transmissible epidemic (R(0) > or = 2.0), long duration school closure should begin as soon as possible and be combined with other interventions.


Subject(s)
Communicable Disease Control/methods , Disease Outbreaks , Disease Transmission, Infectious/prevention & control , Influenza, Human/epidemiology , Schools , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/therapeutic use , Basic Reproduction Number , Chemoprevention/methods , Child , Child, Preschool , Computer Simulation , Humans , Infant , Infant, Newborn , Middle Aged , Models, Statistical , Young Adult
13.
BMC Public Health ; 10: 168, 2010 Mar 29.
Article in English | MEDLINE | ID: mdl-20346187

ABSTRACT

BACKGROUND: Following the emergence of the A/H1N1 2009 influenza pandemic, public health interventions were activated to lessen its potential impact. Computer modelling and simulation can be used to determine the potential effectiveness of the social distancing and antiviral drug therapy interventions that were used at the early stages of the pandemic, providing guidance to public health policy makers as to intervention strategies in future pandemics involving a highly pathogenic influenza strain. METHODS: An individual-based model of a real community with a population of approximately 30,000 was used to determine the impact of alternative interventions strategies, including those used in the initial stages of the 2009 pandemic. Different interventions, namely school closure and antiviral strategies, were simulated in isolation and in combination to form different plausible scenarios. We simulated epidemics with reproduction numbers R0 of 1.5, which aligns with estimates in the range 1.4-1.6 determined from the initial outbreak in Mexico. RESULTS: School closure of 1 week was determined to have minimal effect on reducing overall illness attack rate. Antiviral drug treatment of 50% of symptomatic cases reduced the attack rate by 6.5%, from an unmitigated rate of 32.5% to 26%. Treatment of diagnosed individuals combined with additional household prophylaxis reduced the final attack rate to 19%. Further extension of prophylaxis to close contacts (in schools and workplaces) further reduced the overall attack rate to 13% and reduced the peak daily illness rate from 120 to 22 per 10,000 individuals. We determined the size of antiviral stockpile required; the ratio of the required number of antiviral courses to population was 13% for the treatment-only strategy, 25% for treatment and household prophylaxis and 40% for treatment, household and extended prophylaxis. Additional simulations suggest that coupling school closure with the antiviral strategies further reduces epidemic impact. CONCLUSIONS: These results suggest that the aggressive use of antiviral drugs together with extended school closure may substantially slow the rate of influenza epidemic development. These strategies are more rigorous than those actually used during the early stages of the relatively mild 2009 pandemic, and are appropriate for future pandemics that have high morbidity and mortality rates.


Subject(s)
Community Health Planning/methods , Influenza A Virus, H5N1 Subtype , Influenza, Human/prevention & control , Pandemics/prevention & control , Post-Exposure Prophylaxis/methods , Quarantine/methods , Adult , Antiviral Agents/therapeutic use , Child , Contact Tracing , Disease Progression , Female , Humans , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza, Human/transmission , Male , Mexico/epidemiology , Public Policy , Residence Characteristics , Schools , Workplace
14.
Curr Opin Psychol ; 31: 89-93, 2020 02.
Article in English | MEDLINE | ID: mdl-31561171

ABSTRACT

The authors review literature that can inform the design of better privacy policies. The review is focused around three privacy principles central to consumer-firm interactions. These privacy principles include: sensitive information and willingness to disclose; covert collection and use of data; and notice and choice. The authors argue that the best privacy policies are those which adequately address these principles thereby lowering the public's privacy concern. The ability of the EU and US's regulatory environments to address these principles is discussed. In accordance with the review the authors note the EU's GDPR has provisions to address the three privacy principles while the U.S. regulatory environment is not effective in addressing these principles.


Subject(s)
Disclosure/legislation & jurisprudence , Policy , Privacy/legislation & jurisprudence , European Union , Humans , United States
15.
BMC Public Health ; 9: 117, 2009 Apr 29.
Article in English | MEDLINE | ID: mdl-19400970

ABSTRACT

BACKGROUND: Social distancing interventions such as school closure and prohibition of public gatherings are present in pandemic influenza preparedness plans. Predicting the effectiveness of intervention strategies in a pandemic is difficult. In the absence of other evidence, computer simulation can be used to help policy makers plan for a potential future influenza pandemic. We conducted simulations of a small community to determine the magnitude and timing of activation that would be necessary for social distancing interventions to arrest a future pandemic. METHODS: We used a detailed, individual-based model of a real community with a population of approximately 30,000. We simulated the effect of four social distancing interventions: school closure, increased isolation of symptomatic individuals in their household, workplace nonattendance, and reduction of contact in the wider community. We simulated each of the intervention measures in isolation and in several combinations; and examined the effect of delays in the activation of interventions on the final and daily attack rates. RESULTS: For an epidemic with an R0 value of 1.5, a combination of all four social distancing measures could reduce the final attack rate from 33% to below 10% if introduced within 6 weeks from the introduction of the first case. In contrast, for an R0 of 2.5 these measures must be introduced within 2 weeks of the first case to achieve a similar reduction; delays of 2, 3 and 4 weeks resulted in final attack rates of 7%, 21% and 45% respectively. For an R0 of 3.5 the combination of all four measures could reduce the final attack rate from 73% to 16%, but only if introduced without delay; delays of 1, 2 or 3 weeks resulted in final attack rates of 19%, 35% or 63% respectively. For the higher R0 values no single measure has a significant impact on attack rates. CONCLUSION: Our results suggest a critical role of social distancing in the potential control of a future pandemic and indicate that such interventions are capable of arresting influenza epidemic development, but only if they are used in combination, activated without delay and maintained for a relatively long period.


Subject(s)
Disease Outbreaks/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Models, Biological , Patient Isolation , Quarantine/methods , Social Isolation , Adolescent , Adult , Age Factors , Child , Computer Simulation , Humans , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza, Human/transmission , Influenza, Human/virology , Middle Aged , Schools , Workplace , Young Adult
16.
Vaccine ; 36(7): 997-1007, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29373192

ABSTRACT

BACKGROUND: To inform national healthcare authorities whether quadrivalent influenza vaccines (QIVs) provide better value for money than trivalent influenza vaccines (TIVs), we assessed the cost-effectiveness of TIV and QIV in low-and-middle income communities based in South Africa and Vietnam and contrasted these findings with those from a high-income community in Australia. METHODS: Individual based dynamic simulation models were interfaced with a health economic analysis model to estimate the cost-effectiveness of vaccinating 15% of the population with QIV or TIV in each community over the period 2003-2013. Vaccination was prioritized for HIV-infected individuals, before elderly aged 65+ years and young children. Country or region-specific data on influenza-strain circulation, clinical outcomes and costs were obtained from published sources. The societal perspective was used and outcomes were expressed in International$ (I$) per quality-adjusted life-year (QALY) gained. RESULTS: When compared with TIV, we found that QIV would provide a greater reduction in influenza-related morbidity in communities in South Africa and Vietnam as compared with Australia. The incremental cost-effectiveness ratio of QIV versus TIV was estimated at I$4183/QALY in South Africa, I$1505/QALY in Vietnam and I$80,966/QALY in Australia. CONCLUSIONS: The cost-effectiveness of QIV varied between communities due to differences in influenza epidemiology, comorbidities, and unit costs. Whether TIV or QIV is the most cost-effective alternative heavily depends on influenza B burden among subpopulations targeted forvaccination in addition to country-specific willingness-to-pay thresholds and budgetary impact.


Subject(s)
Community Health Services , Cost-Benefit Analysis , Influenza Vaccines/immunology , Influenza, Human/prevention & control , Vaccination , Australia/epidemiology , Female , Humans , Influenza Vaccines/administration & dosage , Influenza, Human/epidemiology , Influenza, Human/transmission , Male , Models, Theoretical , Monte Carlo Method , Outcome Assessment, Health Care , Public Health Surveillance , Socioeconomic Factors , South Africa/epidemiology , Vietnam/epidemiology
17.
Influenza Other Respir Viruses ; 10(4): 324-32, 2016 07.
Article in English | MEDLINE | ID: mdl-26663701

ABSTRACT

BACKGROUND: A modelling study was conducted to determine the effectiveness of trivalent (TIV) and quadrivalent (QIV) vaccination in South Africa and Australia. OBJECTIVES: This study aimed to determine the potential benefits of alternative vaccination strategies which may depend on community-specific demographic and health characteristics. METHODS: Two influenza A and two influenza B strains were simulated using individual-based simulation models representing specific communities in South Africa and Australia over 11 years. Scenarios using TIV or QIV, with alternative prioritisation strategies and vaccine coverage levels, were evaluated using a country-specific health outcomes process. RESULTS: In South Africa, approximately 18% fewer deaths and hospitalisations would be expected to result from the use of QIV compared to TIV over the 11 modelled years (P = 0·031). In Australia, only 2% (P = 0·30) fewer deaths and hospitalisations would result. Vaccinating 2%, 5%, 15% or 20% of the population with TIV using a strategy of prioritising vulnerable age groups, including HIV-positive individuals, resulted in reductions in hospitalisations and mortality of at least 7%, 18%, 57% and 66%, respectively, in both communities. CONCLUSIONS: The degree to which QIV can reduce health burden compared to TIV is strongly dependent on the number of years in which the influenza B lineage in the TIV matches the circulating B lineages. Assuming a moderate level of B cross-strain protection, TIV may be as effective as QIV. The choice of vaccination prioritisation has a greater impact than the QIV/TIV choice, with strategies targeting those most responsible for transmission being most effective.


Subject(s)
Influenza A virus/immunology , Influenza B virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Antibodies, Viral/immunology , Australia , Cross Protection , Female , Humans , Influenza A virus/genetics , Influenza B virus/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Male , Models, Theoretical , South Africa , Vaccination
18.
PLoS One ; 11(10): e0164054, 2016.
Article in English | MEDLINE | ID: mdl-27711149

ABSTRACT

As malaria is being pushed back on many frontiers and global case numbers are declining, accurate measurement and prediction of transmission becomes increasingly difficult. Low transmission settings are characterised by high levels of spatial heterogeneity, which stands in stark contrast to the widely used assumption of spatially homogeneous transmission used in mathematical transmission models for malaria. In the present study an individual-based mathematical malaria transmission model that incorporates multiple parasite clones, variable human exposure and duration of infection, limited mosquito flight distance and most importantly geographically heterogeneous human and mosquito population densities was used to illustrate the differences between homogeneous and heterogeneous transmission assumptions when aiming to predict surrogate indicators of transmission intensity such as population parasite prevalence or multiplicity of infection (MOI). In traditionally highly malaria endemic regions where most of the population harbours malaria parasites, humans are often infected with multiple parasite clones. However, studies have shown also in areas with low overall parasite prevalence, infection with multiple parasite clones is a common occurrence. Mathematical models assuming homogeneous transmission between humans and mosquitoes cannot explain these observations. Heterogeneity of transmission can arise from many factors including acquired immunity, body size and occupational exposure. In this study, we show that spatial heterogeneity has a profound effect on predictions of MOI and parasite prevalence. We illustrate, that models assuming homogeneous transmission underestimate average MOI in low transmission settings when compared to field data and that spatially heterogeneous models predict stable transmission at much lower overall parasite prevalence. Therefore it is very important that models used to guide malaria surveillance and control strategies in low transmission and elimination settings take into account the spatial features of the specific target area, including human and mosquito vector distribution.


Subject(s)
Malaria, Falciparum/transmission , Plasmodium falciparum/physiology , Spatial Analysis , Alleles , Animals , Antigens, Protozoan/genetics , Culicidae/physiology , Humans , Insect Vectors/physiology , Models, Statistical , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
19.
J Invest Dermatol ; 121(2): 267-72, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12880417

ABSTRACT

In an attempt to identify potential staging markers of effective healing, changes in connective tissue properties were measured in a human skin excisional wound healing model in which tissue was re-excised at intervals up to 6 months after injury. The proportion of collagen III relative to collagen I increased significantly (p<0.001) up to 6 weeks after initial injury and remained elevated up to 6 months, at which time the proportion of collagen III was 70% above baseline values. Extractability of biopsy tissue collagen by pepsin increased significantly throughout the study (baseline, 32.8+/-6.8%; 6 months, 89.1+/-8.9%), with inverse changes in the mature skin cross-link, histidinohydroxylysinonorleucine (baseline, 1.18+/-0.11 mol/mol collagen; 6 months, 0.27+/-0.09 mol/mol collagen). Pyridinoline content increased over the period of the study, although remaining at relatively low concentrations (baseline, 0.037+/-0.011; 6 months, 0.063+/-0.014 mol/mol collagen), and the pyridinoline/deoxypyridinoline ratio was significantly higher (baseline, 3.5+/-0.6; 6 months, 10.3+/-2.2). Elastin content, measured as desmosine cross-links, decreased significantly in the first 3 weeks and continued to decline over the period of study. Overall, the data suggest that remodeling of the wound tissue continues at least up to 6 months after injury. The close inverse correlation between histidinohydroxylysinonorleucine concentrations and extractability by pepsin (r2=0.89, p<0.0001) suggests a causal relationship, consistent with the likely effects of a substantial network of mature, inter-helical bonds in collagen.


Subject(s)
Collagen Type III/metabolism , Collagen/isolation & purification , Histidine/analogs & derivatives , Skin/chemistry , Skin/injuries , Wound Healing , Wounds, Penetrating/physiopathology , Adult , Amino Acids/metabolism , Collagen Type I/metabolism , Dipeptides/metabolism , Elastin/metabolism , Histidine/metabolism , Humans , Male , Time Factors
20.
PLoS One ; 9(8): e104646, 2014.
Article in English | MEDLINE | ID: mdl-25105418

ABSTRACT

BACKGROUND: The spread of Bluetongue virus (BTV) among ruminants is caused by movement of infected host animals or by movement of infected Culicoides midges, the vector of BTV. Biologically plausible models of Culicoides dispersal are necessary for predicting the spread of BTV and are important for planning control and eradication strategies. METHODS: A spatially-explicit simulation model which captures the two underlying population mechanisms, population dynamics and movement, was developed using extensive data from a trapping program for C. brevitarsis on the east coast of Australia. A realistic midge flight sub-model was developed and the annual incursion and population establishment of C. brevitarsis was simulated. Data from the literature was used to parameterise the model. RESULTS: The model was shown to reproduce the spread of C. brevitarsis southwards along the east Australian coastline in spring, from an endemic population to the north. Such incursions were shown to be reliant on wind-dispersal; Culicoides midge active flight on its own was not capable of achieving known rates of southern spread, nor was re-emergence of southern populations due to overwintering larvae. Data from midge trapping programmes were used to qualitatively validate the resulting simulation model. CONCLUSIONS: The model described in this paper is intended to form the vector component of an extended model that will also include BTV transmission. A model of midge movement and population dynamics has been developed in sufficient detail such that the extended model may be used to evaluate the timing and extent of BTV outbreaks. This extended model could then be used as a platform for addressing the effectiveness of spatially targeted vaccination strategies or animal movement bans as BTV spread mitigation measures, or the impact of climate change on the risk and extent of outbreaks. These questions involving incursive Culicoides spread cannot be simply addressed with non-spatial models.


Subject(s)
Bluetongue virus/pathogenicity , Bluetongue/transmission , Ceratopogonidae/virology , Insect Vectors/virology , Animals , Australia/epidemiology , Bluetongue/epidemiology , Ceratopogonidae/physiology , Climate , Computer Simulation , Disease Outbreaks/veterinary , Insect Vectors/physiology , Models, Biological , Sheep , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL