Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 151(1): 138-52, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23021221

ABSTRACT

Inflammation and macrophage foam cells are characteristic features of atherosclerotic lesions, but the mechanisms linking cholesterol accumulation to inflammation and LXR-dependent response pathways are poorly understood. To investigate this relationship, we utilized lipidomic and transcriptomic methods to evaluate the effect of diet and LDL receptor genotype on macrophage foam cell formation within the peritoneal cavities of mice. Foam cell formation was associated with significant changes in hundreds of lipid species and unexpected suppression, rather than activation, of inflammatory gene expression. We provide evidence that regulated accumulation of desmosterol underlies many of the homeostatic responses, including activation of LXR target genes, inhibition of SREBP target genes, selective reprogramming of fatty acid metabolism, and suppression of inflammatory-response genes, observed in macrophage foam cells. These observations suggest that macrophage activation in atherosclerotic lesions results from extrinsic, proinflammatory signals generated within the artery wall that suppress homeostatic and anti-inflammatory functions of desmosterol.


Subject(s)
Atherosclerosis/immunology , Cholesterol/biosynthesis , Desmosterol/metabolism , Foam Cells/metabolism , Lipid Metabolism , Transcriptome , Animals , Atherosclerosis/metabolism , Cholesterol/analogs & derivatives , Cholesterol/metabolism , Fatty Acids/metabolism , Foam Cells/immunology , Gene Knockdown Techniques , Leukocytes, Mononuclear/metabolism , Male , Mice , Mice, Inbred C57BL , Receptors, LDL/genetics , Receptors, LDL/metabolism , Sterol Regulatory Element Binding Proteins/metabolism
2.
Curr Opin Pulm Med ; 29(2): 96-103, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36562273

ABSTRACT

PURPOSE OF REVIEW: There is biological and epidemiological evidence supporting a role for vitamin D in the respiratory system, and vitamin D deficiency (VDD) may be associated with poor health outcomes in people with chronic obstructive pulmonary disease (COPD). This review summarizes recent findings relevant to the role of vitamin D in COPD. RECENT FINDINGS: The prevalence of VDD in people with COPD may be underestimated. Treatment of severe VDD [serum 25(OH)D3 < 10 ng/ml] may reduce the risk of COPD exacerbations. Vitamin D supplementation may also improve functional capacity and quality of life in people with COPD. However, there is no strong evidence that vitamin D supplementation slows the decline in lung function. SUMMARY: Although there are many known associations between vitamin D and COPD outcomes, the causal nature of these associations and the precise benefits of vitamin D supplementation remain unclear. High-quality randomized controlled trials are necessary.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Vitamin D Deficiency , Humans , Quality of Life , Vitamin D/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/complications , Vitamin D Deficiency/complications , Vitamin D Deficiency/drug therapy , Vitamin D Deficiency/epidemiology
3.
J Clin Monit Comput ; 37(2): 409-420, 2023 04.
Article in English | MEDLINE | ID: mdl-36149575

ABSTRACT

We recently developed a model-based method for analyzing multiple breath nitrogen washout data that does not require identification of Phase-III. In the present study, we assessed the effect of irregular breathing patterns on the intra-subject variabilities of the model parameters. Nitrogen fraction at the mouth was measured in 18 healthy and 20 asthmatic subjects during triplicate performances of multiple breath nitrogen washout, during controlled (target tidal volume 1 L at 8-12 breaths per minute) and free (unrestricted) breathing. The parameters Scond, Sacin and functional residual capacity (FRC) were obtained by conventional analysis of the slope of Phase-III. Fitting the model to the washout data provided functional residual capacity (FRCM), dead space volume (VD), the coefficient of variation of regional specific ventilation ([Formula: see text]), and the model equivalent of Sacin (Sacin-M). Intra-participant coefficients of variation for the model parameters for both health and asthma were FRCM < 5.2%, VD < 5.4%, [Formula: see text] < 9.0%, and Sacin-M < 45.6% for controlled breathing, and FRCM < 4.6%, VD < 5.3%, [Formula: see text] < 13.2%, and Sacin-M < 103.2% for free breathing. The coefficients of variation limits for conventional parameters were FRC < 6.1%, with Scond < 73.6% and Sacin < 49.2% for controlled breathing and Scond < 35.0% and Sacin < 74.4% for free breathing. The model-fitting approach to multiple breath nitrogen washout analysis provides a measure of regional ventilation heterogeneity in [Formula: see text] that is less affected by irregularities in the breathing pattern than its corresponding Phase-III slope analysis parameter Scond.


Subject(s)
Asthma , Nitrogen , Humans , Respiratory Function Tests/methods , Lung , Respiration
4.
Curr Opin Pulm Med ; 28(2): 152-161, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34690256

ABSTRACT

PURPOSE OF REVIEW: Pulmonary rehabilitation improves clinical outcomes in patients with chronic obstructive pulmonary disease (COPD). Traditional centre-based (in-person) pulmonary rehabilitation was largely shut down in response to the COVID-19 pandemic, forcing many centres to rapidly shift to remote home-based programs in the form of telerehabilitation (tele-pulmonary rehabilitation). This review summarizes the recent evidence for the feasibility and effectiveness of remote pulmonary rehabilitation programs, and their implications for the delivery of pulmonary rehabilitation in a postpandemic world. RECENT FINDINGS: A number of innovative adaptations to pulmonary rehabilitation in response to COVID-19 have been reported, and the evidence supports tele-pulmonary rehabilitation as a viable alternative to traditional centre-based pulmonary rehabilitation. However, these studies also highlight the challenges that must be surmounted in order to see its widespread adoption. SUMMARY: There are outstanding questions regarding the optimal model for tele-pulmonary rehabilitation. In the post-COVID-19 world, a 'hybrid' model may be more desirable, with some components held in person and others via telehealth technology. This would be determined by the infrastructure and expertise of individual centres, and the needs of their patients. In order to achieve a truly patient-centred pulmonary rehabilitation program, high-quality studies addressing these outstanding questions, as well as multidisciplinary collaboration, are required.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Telerehabilitation , Feasibility Studies , Humans , Pandemics , SARS-CoV-2
5.
Am J Respir Crit Care Med ; 204(10): 1143-1152, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34464242

ABSTRACT

Rationale: Inhaled corticosteroids (ICS) are commonly prescribed with long-acting ß2-agonists (LABA) in chronic obstructive pulmonary disease (COPD). To date, the effects of ICS therapy on the airway microbiome in COPD are unknown. Objectives: To determine the effects of ICS/LABA on the airway microbiome of patients with COPD. Methods: Clinically stable patients with COPD were enrolled into a 4-week run-in period during which ICS was discontinued and all participants were placed on formoterol (Form) 12 µg twice daily (BID). The participants were then randomized to budesonide/formoterol (Bud + Form; 400/12 µg BID), fluticasone/salmeterol (Flu + Salm; 250/50 µg BID), or formoterol only (12 µg BID) for 12 weeks. Participants underwent bronchoscopy before and after the 12-week treatment period. The primary endpoint was the comparison of changes in the airway microbiome over the trial period between the ICS/LABA and LABA-only groups. Measurements and Main Results: Sixty-three participants underwent randomization: Bud + Form (n = 20), Flu + Salm (n = 22), and Form (n = 21) groups; 56 subjects completed all visits. After the treatment period, changes in α-diversity were significantly different across groups, especially between Flu + Salm and Form groups (Δrichness: P = 0.02; ΔShannon index: P = 0.03). Longitudinal differential abundance analyses revealed more pronounced microbial shifts from baseline in the fluticasone (vs. budesonide or formoterol only) group. Conclusions: Fluticasone-based ICS/LABA therapy modifies the airway microbiome in COPD, leading to a relative reduction in α-diversity and a greater number of bacterial taxa changes. These data may have implications in patients who develop pneumonia on ICS. Clinical trial registered with www.clinicaltrials.gov (NCT02833480).


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Adrenergic beta-2 Receptor Agonists/therapeutic use , Drug Combinations , Microbiota/drug effects , Pulmonary Disease, Chronic Obstructive/drug therapy , Receptors, Adrenergic, beta-2/drug effects , Receptors, Adrenergic, beta-2/therapeutic use , Administration, Inhalation , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Treatment Outcome
6.
Hum Genet ; 140(6): 969-979, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33604698

ABSTRACT

SARS-CoV-2 is responsible for the coronavirus disease 2019 (COVID-19) and the current health crisis. Despite intensive research efforts, the genes and pathways that contribute to COVID-19 remain poorly understood. We, therefore, used an integrative genomics (IG) approach to identify candidate genes responsible for COVID-19 and its severity. We used Bayesian colocalization (COLOC) and summary-based Mendelian randomization to combine gene expression quantitative trait loci (eQTLs) from the Lung eQTL (n = 1,038) and eQTLGen (n = 31,784) studies with published COVID-19 genome-wide association study (GWAS) data from the COVID-19 Host Genetics Initiative. Additionally, we used COLOC to integrate plasma protein quantitative trait loci (pQTL) from the INTERVAL study (n = 3,301) with COVID-19 loci. Finally, we determined any causal associations between plasma proteins and COVID-19 using multi-variable two-sample Mendelian randomization (MR). The expression of 18 genes in lung and/or blood co-localized with COVID-19 loci. Of these, 12 genes were in suggestive loci (PGWAS < 5 × 10-05). LZTFL1, SLC6A20, ABO, IL10RB and IFNAR2 and OAS1 had been previously associated with a heightened risk of COVID-19 (PGWAS < 5 × 10-08). We identified a causal association between OAS1 and COVID-19 GWAS. Plasma ABO protein, which is associated with blood type in humans, demonstrated a significant causal relationship with COVID-19 in the MR analysis; increased plasma levels were associated with an increased risk of COVID-19 and, in particular, severe COVID-19. In summary, our study identified genes associated with COVID-19 that may be prioritized for future investigations. Importantly, this is the first study to demonstrate a causal association between plasma ABO protein and COVID-19.


Subject(s)
Blood Proteins/metabolism , COVID-19/epidemiology , Genetic Predisposition to Disease , Lung/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , SARS-CoV-2/isolation & purification , ABO Blood-Group System/metabolism , COVID-19/metabolism , COVID-19/virology , Cohort Studies , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Risk Factors
7.
Respir Res ; 22(1): 316, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34937547

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is an age-related condition that has been associated with early telomere attrition; the clinical implications of telomere shortening in COPD are not well known. In this study we aimed to determine the relationship of the epigenetic regulation of telomeric length in peripheral blood with the risk of exacerbations and hospitalization in patients with COPD. METHODS: Blood DNA methylation profiles were obtained from 292 patients with COPD enrolled in the placebo arm of the Macrolide Azithromycin to Prevent Rapid Worsening of Symptoms Associated with Chronic Obstructive Pulmonary Disease (MACRO) Study and who were followed for 1-year. We calculated telomere length based on DNA methylation markers (DNAmTL) and related this biomarker to the risk of exacerbation and hospitalization and health status (St. George Respiratory Questionnaire [SGRQ]) score over time using a Cox proportional hazards model. We also used linear models to investigate the associations of DNAmTL with the rates of exacerbation and hospitalization (adjusted for chronological age, lung function, race, sex, smoking, body mass index and cell composition). RESULTS: Participants with short DNAmTL demonstrated increased risk of exacerbation (P = 0.02) and hospitalization (P = 0.03) compared to those with longer DNAmTL. DNAmTL age acceleration was associated with higher rates of exacerbation (P = 1.35 × 10-04) and hospitalization (P = 5.21 × 10-03) and poor health status (lower SGRQ scores) independent of chronological age (P = 0.03). CONCLUSION: Telomeric age based on blood DNA methylation is associated with COPD exacerbation and hospitalization and thus a promising biomarker for poor outcomes in COPD.


Subject(s)
Azithromycin/therapeutic use , Hospitalization/trends , Pulmonary Disease, Chronic Obstructive/drug therapy , Telomere/physiology , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Biomarkers/metabolism , DNA Methylation , Disease Progression , Female , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Quality of Life , Retrospective Studies , Surveys and Questionnaires , Time Factors , United States/epidemiology
8.
Thorax ; 75(11): 934-943, 2020 11.
Article in English | MEDLINE | ID: mdl-32839289

ABSTRACT

BACKGROUND: The anti-inflammatory pneumoprotein club cell secretory protein-16 (CC-16) is associated with the clinical expression of chronic obstructive pulmonary disease (COPD). We aimed to determine if there is a causal effect of serum CC-16 level on the risk of having COPD and/or its progression using Mendelian randomisation (MR) analysis. METHODS: We performed a genome-wide association meta-analysis for serum CC-16 in two COPD cohorts (Lung Health Study (LHS), n=3850 and ECLIPSE, n=1702). We then used the CC-16-associated single-nucleotide polymorphisms (SNPs) as instrumental variables in MR analysis to identify a causal effect of serum CC-16 on 'COPD risk' (ie, case status in the International COPD Genetics Consortium/UK-Biobank dataset; n=35 735 COPD cases, n=222 076 controls) and 'COPD progression' (ie, annual change in forced expiratory volume in 1 s in LHS and ECLIPSE). We also determined the associations between SNPs associated with CC-16 and gene expression using n=1111 lung tissue samples from the Lung Expression Quantitative Trait Locus Study. RESULTS: We identified seven SNPs independently associated (p<5×10-8) with serum CC-16 levels; six of these were novel. MR analysis suggested a protective causal effect of increased serum CC-16 on COPD risk (MR estimate (SE) -0.11 (0.04), p=0.008) and progression (LHS only, MR estimate (SE) 7.40 (3.28), p=0.02). Five of the SNPs were also associated with gene expression in lung tissue (at false discovery rate <0.1) of several genes, including the CC-16-encoding gene SCGB1A1. CONCLUSION: We have identified several novel genetic variants associated with serum CC-16 level in COPD cohorts. These genetic associations suggest a potential causal effect of serum CC-16 on the risk of having COPD and its progression, the biological basis of which warrants further investigation.


Subject(s)
Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive/genetics , Uteroglobin/blood , Adult , Disease Progression , Female , Genome-Wide Association Study , Humans , Longitudinal Studies , Male , Middle Aged , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/blood , Respiratory Function Tests , Risk
9.
Respirology ; 25(6): 613-619, 2020 06.
Article in English | MEDLINE | ID: mdl-31482693

ABSTRACT

BACKGROUND AND OBJECTIVE: Fixed airflow obstruction (FAO) in asthma occurs despite optimal inhaled treatment and no smoking history, and remains a significant problem, particularly with increasing age and duration of asthma. Increased lung compliance and loss of lung elastic recoil has been observed in older people with asthma, but their link to FAO has not been established. We determined the relationship between abnormal lung elasticity and airflow obstruction in asthma. METHODS: Non-smoking asthmatic subjects aged >40 years, treated with 2 months of high-dose inhaled corticosteroid/long-acting beta-agonist (ICS/LABA), had FAO measured by spirometry, and respiratory system resistance at 5 Hz (Rrs5 ) and respiratory system reactance at 5 Hz (Xrs5 ) measured by forced oscillation technique. Lung compliance (K) and elastic recoil (B/A) were calculated from pressure-volume curves measured by an oesophageal balloon. Linear correlations between K and B/A, and forced expiratory volume in 1 s/forced vital capacity (FEV1 /FVC), Rrs5 and Xrs5 were assessed. RESULTS: Eighteen subjects (11 males; mean ± SD age: 64 ± 8 years, asthma duration: 39 ± 22 years) had moderate FAO measured by spirometry ((mean ± SD z-score) post-bronchodilator FEV1 : -2.2 ± 0.5, FVC: -0.7 ± 1.0, FEV1 /FVC: -2.6 ± 0.7) and by increased Rrs5 (median (IQR) z-score) 2.7 (1.9 to 3.2) and decreased Xrs5 : -4.1(-2.4 to -7.3). Lung compliance (K) was increased in 9 of 18 subjects and lung elastic recoil (B/A) reduced in 5 of 18 subjects. FEV1 /FVC correlated negatively with K (rs = -0.60, P = 0.008) and Rrs5 correlated negatively with B/A (rs = -0.52, P = 0.026), independent of age. Xrs5 did not correlate with lung elasticity indices. CONCLUSION: Increased lung compliance and loss of elastic recoil relate to airflow obstruction in older non-smoking asthmatic subjects, independent of ageing. Thus, structural lung tissue changes may contribute to persistent, steroid-resistant airflow obstruction. CLINICAL TRIAL REGISTRATION: ACTRN126150000985583 at anzctr.org.au (UTN: U1111-1156-2795).


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Forced Expiratory Volume/physiology , Lung Compliance/physiology , Vital Capacity/physiology , Aged , Asthma/pathology , Elasticity/drug effects , Female , Humans , Lung/pathology , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive , Respiratory Function Tests/methods , Spirometry/methods
11.
Respir Res ; 20(1): 236, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31665000

ABSTRACT

BACKGROUND: There is considerable heterogeneity in the rate of lung function decline in chronic obstructive pulmonary disease (COPD), the determinants of which are largely unknown. Observational studies in COPD indicate that low body mass index (BMI) is associated with worse outcomes, and overweight/obesity has a protective effect - the so-called "obesity paradox". We aimed to determine the relationship between BMI and the rate of FEV1 decline in data from published clinical trials in COPD. METHODS: We performed a systematic review of the literature, and identified 5 randomized controlled trials reporting the association between BMI and FEV1 decline. Four of these were included in the meta-analyses. We analyzed BMI in 4 categories: BMI-I (< 18.5 or <  20 kg/m2), BMI-II (18.5 or 20 to < 25 kg/m2), BMI-III (25 to < 29 or < 30 kg/m2) and BMI-IV (≥29 or ≥ 30 kg/m2). We then performed a meta-regression of all the estimates against the BMI category. RESULTS: The estimated rate of FEV1 decline decreased with increasing BMI. Meta-regression of the estimates showed that BMI was significantly associated with the rate of FEV1 decline (linear trend p = 1.21 × 10- 5). CONCLUSIONS: These novel findings support the obesity paradox in COPD: compared to normal BMI, low BMI is a risk factor for accelerated lung function decline, whilst high BMI has a protective effect. The relationship may be due to common but as-of-yet unknown causative factors; further investigation into which may reveal novel endotypes or targets for therapeutic intervention.


Subject(s)
Body Mass Index , Forced Expiratory Volume/physiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Randomized Controlled Trials as Topic/methods , Humans , Obesity/diagnosis , Obesity/epidemiology , Obesity/physiopathology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Respiratory Function Tests/trends
12.
COPD ; 15(4): 341-349, 2018.
Article in English | MEDLINE | ID: mdl-29799289

ABSTRACT

Hyperinflation, gas trapping and their responses to long-acting bronchodilator are clinically important in COPD. The forced oscillation technique (FOT) measures of respiratory system resistance and reactance are sensitive markers of bronchodilator response in COPD. The relationships between changes in resistance and reactance, and changes in hyperinflation and gas trapping, following long-acting bronchodilator (LA-BD) have not been studied. 15 subjects with mild-moderate COPD underwent FOT, spirometry then body plethysmography, before and 2 hours after a single 150 microg dose of the LA-BD indacaterol. Hyperinflation was quantified as the inspiratory capacity to total lung capacity ratio (IC/TLC), and gas trapping as residual volume to TLC ratio (RV/TLC). At baseline, FOT parameters were moderately correlated with IC/TLC (|r| 0.53-0.73, p < 0.05). At 2 hours post-LA-BD, there were moderate correlations between change in FOT and change in RV/TLC (|r| 0.60-0.82, p < 0.05). Baseline FOT parameters also correlated with the subsequent post-LA-BD change in both IC/TLC (|r| 0.54-0.62, p < 0.05) and RV/TLC (|r| 0.57-0.76, p < 0.05). FOT impedance reflects hyperinflation and gas trapping in COPD, and the potential for long-acting bronchodilator responsiveness. These results provide us with further insight into the physiological mechanisms of action of long-acting bronchodilator treatment, and may be clinically useful for predicting treatment responses.


Subject(s)
Bronchodilator Agents/therapeutic use , Indans/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Quinolones/therapeutic use , Aged , Airway Resistance/drug effects , Bronchodilator Agents/pharmacology , Diagnostic Techniques, Respiratory System , Female , Forced Expiratory Volume/drug effects , Humans , Indans/pharmacology , Male , Middle Aged , Oscillometry , Plethysmography, Whole Body , Pulmonary Diffusing Capacity/drug effects , Pulmonary Disease, Chronic Obstructive/physiopathology , Quinolones/pharmacology , Residual Volume/drug effects , Severity of Illness Index , Spirometry , Total Lung Capacity/drug effects
13.
Proc Natl Acad Sci U S A ; 111(2): 811-6, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24385582

ABSTRACT

Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca(2+) influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca(2+) influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca(2+). Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca(2+). Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca(2+). The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca(2+) influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca(2+)-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance.


Subject(s)
Calcium/metabolism , Candida albicans/physiology , Cell Enlargement , Cell Membrane/metabolism , Cell Polarity/physiology , Models, Biological , cdc42 GTP-Binding Protein/metabolism , Analysis of Variance , Candida albicans/ultrastructure , Hyphae/growth & development , Hyphae/metabolism , Microscopy, Electron, Transmission , Microscopy, Fluorescence
16.
Int Wound J ; 13(6): 1309-1314, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26561281

ABSTRACT

Wound moisture is known to be a key parameter to ensure optimum healing conditions in wound care. This study tests the moisture content of wounds in normal practice in order to observe the moisture condition of the wound at the point of dressing change. This study is also the first large-scale observational study that investigates wound moisture status at dressing change. The WoundSense sensor is a commercially available moisture sensor which sits directly on the wound in order to find the moisture status of the wound without disturbing or removing the dressing. The results show that of the 588 dressing changes recorded, 44·9% were made when the moisture reading was in the optimum moisture zone. Of the 30 patients recruited for this study, 11 patients had an optimum moisture reading for at least 50% of the measurements before dressing change. These results suggest that a large number of unnecessary dressing changes are being made. This is a significant finding of the study as it suggests that the protocols currently followed can be modified to allow fewer dressing changes and less disturbance of the healing wound bed.


Subject(s)
Bandages , Exudates and Transudates/metabolism , Monitoring, Physiologic/instrumentation , Wound Healing/physiology , Wounds and Injuries/therapy , Bandages, Hydrocolloid , Cohort Studies , Electric Impedance , Female , Humans , Male , Monitoring, Physiologic/methods , Skin Care/methods , Wounds and Injuries/physiopathology
17.
J Lipid Res ; 56(3): 722-736, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25598080

ABSTRACT

The spectrum of nonalcoholic fatty liver disease (NAFLD) includes steatosis, nonalcoholic steatohepatitis (NASH), and cirrhosis. Recognition and timely diagnosis of these different stages, particularly NASH, is important for both potential reversibility and limitation of complications. Liver biopsy remains the clinical standard for definitive diagnosis. Diagnostic tools minimizing the need for invasive procedures or that add information to histologic data are important in novel management strategies for the growing epidemic of NAFLD. We describe an "omics" approach to detecting a reproducible signature of lipid metabolites, aqueous intracellular metabolites, SNPs, and mRNA transcripts in a double-blinded study of patients with different stages of NAFLD that involves profiling liver biopsies, plasma, and urine samples. Using linear discriminant analysis, a panel of 20 plasma metabolites that includes glycerophospholipids, sphingolipids, sterols, and various aqueous small molecular weight components involved in cellular metabolic pathways, can be used to differentiate between NASH and steatosis. This identification of differential biomolecular signatures has the potential to improve clinical diagnosis and facilitate therapeutic intervention of NAFLD.


Subject(s)
Lipids/blood , Lipids/urine , Non-alcoholic Fatty Liver Disease , Polymorphism, Single Nucleotide , Adult , Biomarkers/metabolism , Biomarkers/urine , Double-Blind Method , Female , Humans , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/urine
18.
Fungal Genet Biol ; 69: 84-95, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24973462

ABSTRACT

Candida albicans demonstrates three main growth morphologies: yeast, pseudohyphal and true hyphal forms. Cell separation is distinct in these morphological forms and the process of separation is closely linked to the completion of mitosis and cytokinesis. In Saccharomyces cerevisiae the small GTPase Tem1 is known to initiate the mitotic exit network, a signalling pathway involved in signalling the end of mitosis and initiating cytokinesis and cell separation. Here we have characterised the role of Tem1 in C. albicans, and demonstrate that it is essential for mitotic exit and cytokinesis, and that this essential function is signalled through the kinase Cdc15. Cells depleted of Tem1 displayed highly polarised growth but ultimately failed to both complete cytokinesis and re-enter the cell cycle following nuclear division. Consistent with its role in activating the mitotic exit network Tem1 localises to spindle pole bodies in a cell cycle-dependent manner. Ultimately, the mitotic exit network in C. albicans appears to co-ordinate the sequential processes of mitotic exit, cytokinesis and cell separation.


Subject(s)
Candida albicans/physiology , Cytokinesis , Mitosis , Monomeric GTP-Binding Proteins/metabolism , Candida albicans/genetics , Cell Cycle Proteins , Fungal Proteins/genetics , Fungal Proteins/metabolism , GTP-Binding Proteins , Monomeric GTP-Binding Proteins/genetics , Signal Transduction
20.
Proc Natl Acad Sci U S A ; 108(31): 12869-74, 2011 Aug 02.
Article in English | MEDLINE | ID: mdl-21768361

ABSTRACT

Human cytomegalovirus induces and requires fatty acid synthesis. This suggests an essential role for lipidome remodeling in viral replication. We used mass spectrometry to quantify glycerophospholipids in mock-infected and virus-infected fibroblasts, as well as in virions. Although the lipid composition of mock-infected and virus-infected fibroblasts was similar, virions were markedly different. The virion envelope contained twofold more phosphatidylethanolamines and threefold less phosphatidylserines than the host cell. This indicates that the virus buds from a membrane with a different lipid composition from the host cell as a whole. Compared with published datasets, the virion envelope showed the greatest similarity to the synaptic vesicle lipidome. Synaptosome-associated protein of 25 kDa (SNAP-25) is a component of the complex that mediates exocytosis of synaptic vesicles in neurons; and its homolog, SNAP-23, functions in exocytosis in many other cell types. Infection induced the relocation of SNAP-23 to the cytoplasmic viral assembly zone, and knockdown of SNAP-23 inhibited the production of virus. We propose that cytomegalovirus capsids acquire their envelope by budding into vesicles with a lipid composition similar to that of synaptic vesicles, which subsequently fuse with the plasma membrane to release virions from the cell.


Subject(s)
Cytomegalovirus/chemistry , Lipids/chemistry , SNARE Proteins/metabolism , Virion/chemistry , Blotting, Western , Cell Line , Cells, Cultured , Chromatography, Liquid , Cytomegalovirus/physiology , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/virology , Fluorescent Antibody Technique , Glycerophospholipids/chemistry , Glycerophospholipids/metabolism , Host-Pathogen Interactions , Humans , Male , Mass Spectrometry , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Qb-SNARE Proteins/genetics , Qb-SNARE Proteins/metabolism , Qc-SNARE Proteins/genetics , Qc-SNARE Proteins/metabolism , RNA Interference , SNARE Proteins/genetics , Synaptic Vesicles/chemistry , Virion/physiology , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL