Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 19(39): e2302811, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37194977

ABSTRACT

Polymerized ionic liquids (PILs) with super ion diffusion kinetics have aroused considerable attention in rechargeable batteries, which are very promising to solve the problem of the slow ion diffusion kinetics in organic electrode materials. Theoretically, PILs incorporated redox groups are very suitable as anode materials to realize "superlithiation" performance, achieving high lithium storage capacity. In this study, redox pyridinium-based PILs (PILs-Py-400) have been synthesized through trimerization reactions by pyridinium ionic liquids with cyano groups under an appropriate temperature (400 °C). The positively charged skeleton, extended conjugated system, abundant micropores, and amorphous structure for PILs-Py-400 can boost the utilization efficiency of redox sites. A high capacity of 1643 mAh g-1 at 0.1 A g-1 (96.7% of the theoretical capacity) has been obtained, indicating intriguing 13 Li+ redox reactions in per repeating unit of one pyridinium ring, one triazine ring, and one methylene. Moreover, PILs-Py-400 exhibit excellent cycling stability with a capacity of around 1100 mAh g-1 at 1.0 A g-1 after 500 cycles, and the capacity retention is 92.2%.

2.
J Am Chem Soc ; 141(12): 4990-4996, 2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30835451

ABSTRACT

The discovery of new inorganic functional materials is of fundamental importance in synthetic and materials science. In the past, the discovering new materials relied on a slow and serendipitous trial-and-error process, especially in the well-studied oxide systems. Here, we presented a strategy to shorten the period of discovery of new complex metal oxide materials by rapid phase identification and structure determination with 3D electron diffraction (ED) techniques, which do not require pure samples or single crystal growth. With such strategy, three new complex metal oxide materials (BiTi0.855Fe1.145O4.93, BiTi4FeO11 and BiTi2FeO7) were discovered in the simple ternary Bi2O3-Fe2O3-TiO2 system. To our best knowledge, it is the first time to discover three new complex metal oxide materials with new structure types in a single study of ternary metal oxide system. The structures of new materials were refined by combining powder X-ray diffraction (PXRD) with powder neutron diffraction (PND). The most striking feature in this system is that BiTi0.855Fe1.145O4.93 presents edge-shared five-coordinated iron/titanium polyhedra. In addition, another new phase BiTi4GaO11, which is isostructural with BiTi4FeO11, can be obtained when replacing Fe in BiTi4FeO11 with Ga. The band structure investigation of BiTi0.855Fe1.145O4.93, BiTi4FeO11, BiTi2FeO7 and BiTi4GaO11 shown that they were semiconductors with band gaps of 1.65, 2.0, 1.9, and 2.8 eV, respectively. Although this study focused on rapid developing of new inorganic functional materials, this method for developing new materials is available to all fields in chemistry and material chemistry where the limiting factors are impurity, submicrometer-sized crystals, etc.

3.
Mol Oncol ; 18(3): 743-761, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38194998

ABSTRACT

Extracellular vesicles (EVs) and EV proteins are promising biomarkers for cancer liquid biopsy. Herein, we designed a case-control study involving 100 controls and 100 patients with esophageal, stomach, colorectal, liver, or lung cancer to identify common and type-specific biomarkers of plasma-derived EV surface proteins for the five cancers. EV surface proteins were profiled using a sequencing-based proximity barcoding assay. In this study, five differentially expressed proteins (DEPs) and eight differentially expressed protein combinations (DEPCs) showed promising performance (area under curve, AUC > 0.900) in pan-cancer identification [e.g., TENM2 (AUC = 0.982), CD36 (AUC = 0.974), and CD36-ITGA1 (AUC = 0.971)]. Our classification model could properly discriminate between cancer patients and controls using DEPs (AUC = 0.981) or DEPCs (AUC = 0.965). When distinguishing one cancer from the other four, the accuracy of the classification model using DEPCs (85-92%) was higher than that using DEPs (78-84%). We validated the performance in an additional 14 cancer patients and 14 controls, and achieved an AUC value of 0.786 for DEPs and 0.622 for DEPCs, highlighting the necessity to recruit a larger cohort for further validation. When clustering EVs into subpopulations, we detected cluster-specific proteins highly expressed in immune-related tissues. In the context of colorectal cancer, we identified heterogeneous EV clusters enriched in cancer patients, correlating with tumor initiation and progression. These findings provide epidemiological and molecular evidence for the clinical application of EV proteins in cancer prediction, while also illuminating their functional roles in cancer physiopathology.


Subject(s)
Extracellular Vesicles , Lung Neoplasms , Humans , Early Detection of Cancer , Membrane Proteins , Case-Control Studies , Biomarkers , Biomarkers, Tumor
4.
ACS Appl Mater Interfaces ; 13(9): 11442-11448, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33591715

ABSTRACT

In this paper, the aluminum (Al) treatment-induced doping effect on the formation of conductive source-drain (SD) regions of self-aligned top-gate (SATG) amorphous indium gallium zinc oxide (a-InGaZnO or a-IGZO) thin-film transistors (TFTs) is systematically investigated. Average carrier concentration over 1 × 1020 cm-3 and sheet resistance of around 500 Ω/sq result from the Al reaction doping. It is shown that the doping effect is of bulk despite the treatment at the surface. The doping process is disclosed to be a chemical oxidation-reduction reaction, that generates defects of oxygen vacancies and metal interstitials at the metal/a-IGZO interface. Both the generated oxygen vacancies and metal interstitials act as shallow donors, and the oxygen vacancies diffuse rapidly, leading to the bulk-doping effect. The fabricated SATG a-IGZO TFTs with the Al reaction-doped SD regions exhibit both high performance and excellent stability, featuring a low width-normalized SD resistance of about 10 Ω cm, a decent saturation mobility of 13 cm2/(V s), an off current below 1 × 10-13 A, a threshold voltage of 0.5 V, a slight hysteresis of -0.02 V, and a less than 0.1 V threshold voltage shift under 30 V gate bias stresses for 2000 s.

5.
ACS Appl Mater Interfaces ; 9(34): 29021-29029, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28791868

ABSTRACT

A niobium-doped titanium dioxide (Nb:TiO2, NTO) film is a promising candidate material for indium-free transparent conductive oxide (TCO) films. It is challenging and interesting to control (004)-oriented growth to decrease resistivity. In this work, NTO films with different fractions of preferential (004) orientation (η(004)) were controllably prepared by direct current sputtering. Notably, the direction of local-ordering of ions-packing could be adjusted by slightly changing the angle between the sputtering source and the glass substrate, which is identified as a key factor to determine the growth direction of a columnar crystal as well as the η(004) of films. Hall effect measurements indicate that NTO films with the highest η(004) present the lowest resistivity (6.4 × 10-4 Ω cm), which originates from super-high carrier concentration (2.9 × 1021 cm-3) and mobility (3.4 cm2 V-1 s-1). The corresponding low sheet resistance (10.3 Ω sq-1) makes it a potential material for commercial TCO films. We also observe that films with higher η(004) show lower transmittance in the near-infrared region.

SELECTION OF CITATIONS
SEARCH DETAIL