Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Chembiochem ; 24(19): e202300467, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37526951

ABSTRACT

The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).


Subject(s)
Coordination Complexes , Photochemotherapy , Rhenium , Ruthenium , Humans , Photosensitizing Agents/pharmacology , Ruthenium/pharmacology , Coordination Complexes/pharmacology
2.
J Pept Sci ; 29(9): e3488, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36912359

ABSTRACT

The use of 1,4-disubstituted 1,2,3-triazoles as trans-amide bond surrogates has become an important tool for the synthesis of metabolically stabilized peptidomimetics. These heterocyclic bioisosters are generally incorporated into the peptide backbone by applying a diazo-transfer reaction followed by CuAAC (click chemistry) with an α-amino alkyne. Even though the manual synthesis of backbone-modified triazolo-peptidomimetics has been reported by us and others, no procedure has yet been described for an automated synthesis using peptide synthesizers. In order to efficiently adapt these reactions to an automated setup, different conditions were explored, putting special emphasis on the required long-term stability of both the diazo-transfer reagent and the Cu(I) catalyst in solution. ISA·HCl is the reagent of choice to accomplish the diazo-transfer reaction; however, it was found instable in DMF, the most commonly used solvent for SPPS. Thus, an aqueous solution of ISA·HCl was used to prevent its degradation over time, and the composition in the final diazo-transfer reaction was adjusted to preserve suitable swelling conditions of the resins applied. The CuAAC reaction was performed without difficulties using [Cu (CH3 CN)4 ]PF6 as a catalyst and TBTA as a stabilizer to prevent oxidation to Cu(II). The optimized automated two-step procedure was applied to the synthesis of structurally diverse triazolo-peptidomimetics to demonstrate the versatility of the developed methodology. Under the optimized conditions, five triazolo-peptidomimetics (8-5 amino acid residues) were synthesized efficiently using two different resins. Analysis of the crude products by HPLC-MS revealed moderate to good purities of the desired triazolo-peptidomimetics (70-85%). The synthesis time ranged between 9 and 12.5 h.


Subject(s)
Peptidomimetics , Solid-Phase Synthesis Techniques , Peptides , Amides/chemistry , Click Chemistry
3.
Molecules ; 28(23)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38067427

ABSTRACT

[177Lu]Lu-PSMAI&T is widely used for the radioligand therapy of metastatic castration-resistant prostate cancer (mCRPC). Since this kind of therapy has gained a large momentum in recent years, an upscaled production process yielding multiple patient doses in one batch has been developed. During upscaling, the established production method as well as the HPLC quality control were challenged. A major finding was a correlation between the specific activity and the formation of a pre-peak, presumably caused by radiolysis. Hence, nonradioactive reference standards were irradiated with an X-ray source and the formed pre-peak was subsequently identified as a deiodination product by UPLC-MS. To confirm the occurrence of the same deiodinated side product in the routine batch, a customized deiodinated precursor was radiolabeled and analyzed with the same HPLC setup, revealing an identical retention time to the pre-peak in the formerly synthesized routine batches. Additionally, further cyclization products of [177Lu]Lu-PSMAI&T were identified as major contributors to radiochemical impurities. The comparison of two HPLC methods showed the likelihood of the overestimation of the radiochemical purity during the synthesis of [177Lu]Lu-PSMAI&T. Finally, a prospective cost reduction through an optimization of the production process was shown.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prospective Studies , Chromatography, Liquid , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostate-Specific Antigen , Tandem Mass Spectrometry , Radiopharmaceuticals/therapeutic use , Heterocyclic Compounds, 1-Ring , Dipeptides , Treatment Outcome
4.
Eur J Nucl Med Mol Imaging ; 49(10): 3353-3364, 2022 08.
Article in English | MEDLINE | ID: mdl-35385986

ABSTRACT

This document is intended as a supplement to the EANM "Guidelines on current Good Radiopharmacy Practice (cGRPP)" issued by the Radiopharmacy Committee of the EANM (Gillings et al. in EJNMMI Radiopharm Chem. 6:8, 2021). The aim of the EANM Radiopharmacy Committee is to provide a document that describes how to manage risks associated with small-scale "in-house" preparation of radiopharmaceuticals, not intended for commercial purposes or distribution.


Subject(s)
Nuclear Medicine , Radiopharmaceuticals , Humans , Radiopharmaceuticals/adverse effects , Risk Management
5.
Eur J Nucl Med Mol Imaging ; 48(3): 694-707, 2021 03.
Article in English | MEDLINE | ID: mdl-32889615

ABSTRACT

PURPOSE: Almost all radiolabellings of antibodies with 89Zr currently employ the hexadentate chelator desferrioxamine (DFO). However, DFO can lead to unwanted uptake of 89Zr in bones due to instability of the resulting metal complex. DFO*-NCS and the squaramide ester of DFO, DFOSq, are novel analogues that gave more stable 89Zr complexes than DFO in pilot experiments. Here, we directly compare these linker-chelator systems to identify optimal immuno-PET reagents. METHODS: Cetuximab, trastuzumab and B12 (non-binding control antibody) were labelled with 89Zr via DFO*-NCS, DFOSq, DFO-NCS or DFO*Sq. Stability in vitro was compared at 37 °C in serum (7 days), in formulation solution (24 h ± chelator challenges) and in vivo with N87 and A431 tumour-bearing mice. Finally, to demonstrate the practical benefit of more stable complexation for the accurate detection of bone metastases, [89Zr]Zr-DFO*-NCS and [89Zr]Zr-DFO-NCS-labelled trastuzumab and B12 were evaluated in a bone metastasis mouse model where BT-474 breast cancer cells were injected intratibially. RESULTS: [89Zr]Zr-DFO*-NCS-trastuzumab and [89Zr]Zr-DFO*Sq-trastuzumab showed excellent stability in vitro, superior to their [89Zr]Zr-DFO counterparts under all conditions. While tumour uptake was similar for all conjugates, bone uptake was lower for DFO* conjugates. Lower bone uptake for DFO* conjugates was confirmed using a second xenograft model: A431 combined with cetuximab. Finally, in the intratibial BT-474 bone metastasis model, the DFO* conjugates provided superior detection of tumour-specific signal over the DFO conjugates. CONCLUSION: DFO*-mAb conjugates provide lower bone uptake than their DFO analogues; thus, DFO* is a superior candidate for preclinical and clinical 89Zr-immuno-PET.


Subject(s)
Chelating Agents , Radioisotopes , Animals , Cell Line, Tumor , Deferoxamine , Mice , Positron-Emission Tomography , Tissue Distribution , Zirconium
6.
J Biol Inorg Chem ; 25(5): 789-796, 2020 08.
Article in English | MEDLINE | ID: mdl-32661784

ABSTRACT

In recent years, clinical imaging with zirconium-89 (89Zr)-labelled monoclonal antibodies (Ab) by positron emission tomography (immunoPET) has been gaining significant importance in nuclear medicine for the diagnosis of different types of cancer. For complexation of the radiometal 89Zr and its attachment to the Ab, chelating agents are required. To date, only the hexadentate chelator desferrioxamine (DFO) is applied in the clinic for this purpose. However, there is increasing preclinical evidence that the [89Zr]Zr-DFO complex is not sufficiently stable and partly releases the radiometal in vivo due to the incomplete coordination sphere of the metal. This leads to unfavourable unspecific uptake of the osteophilic radiometal in bones, hence decreasing the signal-to-noise-ratio and leading to an increased dose to the patient. In the past, several new chelators with denticities > 6 have been published, notably the octadentate DFO derivative DFO*. DFO*, however, shows limited water solubility, wherefore an oxygen containing analogue, termed oxoDFO*, was developed in 2017. However, no data on the suitability of oxoDFO* for radiolabelling with 89Zr has yet been reported. In this proof-of-concept study, we present the first radiolabelling results of the octadentate, water-soluble chelator oxoDFO*, as well as the in vitro stability of the resulting complex [89Zr]Zr-oxoDFO* in comparison to the analogous octadentate, but less water-soluble derivative DFO* and the current "standard" chelator DFO. In addition, the suitability of DFO* and oxoDFO* for radiolabeling with the short-lived PET metal gallium-68 is discussed. The water-soluble, octadentate chelator oxoDFO* provides stable complexes with the positron emitter Zirconium-89. The radiolabelling can be performed at room temperature and neutral pH and thus, oxoDFO* represents a promising chelator for applications in immunoPET.


Subject(s)
Chelating Agents/chemistry , Coordination Complexes/chemistry , Deferoxamine/chemistry , Gallium Radioisotopes/chemistry , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Zirconium/chemistry , Molecular Structure
7.
Chemistry ; 26(47): 10690-10694, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32691857

ABSTRACT

Mutating the side-chains of amino acids in a peptide ligand, with unnatural amino acids, aiming to mitigate its short half-life is an established approach. However, it is hypothesized that mutating specific backbone peptide bonds with bioisosters can be exploited not only to enhance the proteolytic stability of parent peptides, but also to tune its receptor subtype selectivity. Towards this end, four [Y]6 -Angiotensin II analogues are synthesized where amide bonds have been replaced by 1,4-disubstituted 1,2,3-triazole isosteres in four different backbone locations. All the analogues possessed enhanced stability in human plasma in comparison with the parent peptide, whereas only two of them achieved enhanced AT2 R/AT1 R subtype selectivity. This diversification has been studied through 2D NMR spectroscopy and unveiled a putative more structured microenvironment for the two selective ligands accompanied with increased number of NOE cross-peaks. The most potent analogue, compound 2, has been explored regarding its neurotrophic potential and resulted in an enhanced neurite growth with respect to the established agent C21.


Subject(s)
Angiotensin II/chemistry , Angiotensin II/metabolism , Mutation , Peptides/genetics , Receptors, Angiotensin/chemistry , Receptors, Angiotensin/metabolism , Amino Acids/genetics , Angiotensin II/genetics , Animals , HEK293 Cells , Humans , Ligands , Peptides/chemistry , Peptides/metabolism , Substrate Specificity
8.
Molecules ; 25(16)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781656

ABSTRACT

Peptides represent an important class of biologically active molecules with high potential for the development of diagnostic and therapeutic agents due to their structural diversity, favourable pharmacokinetic properties, and synthetic availability. However, the widespread use of peptides and conjugates thereof in clinical applications can be hampered by their low stability in vivo due to rapid degradation by endogenous proteases. A promising approach to circumvent this potential limitation includes the substitution of metabolically labile amide bonds in the peptide backbone by stable isosteric amide bond mimetics. In this review, we focus on the incorporation of 1,4-disubstituted 1,2,3-triazoles as amide bond surrogates in linear peptides with the aim to increase their stability without impacting their biological function(s). We highlight the properties of this heterocycle as a trans-amide bond surrogate and summarise approaches for the synthesis of triazole-containing peptidomimetics via the Cu(I)-catalysed azide-alkyne cycloaddition (CuAAC). The impacts of the incorporation of triazoles in the backbone of diverse peptides on their biological properties such as, e.g., blood serum stability and affinity as well as selectivity towards their respective molecular target(s) are discussed.


Subject(s)
Amides/chemistry , Peptides/pharmacology , Triazoles/chemistry , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry , Peptidomimetics/pharmacology
9.
Molecules ; 25(11)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32527027

ABSTRACT

The organometallic technetium-99m tricarbonyl core, [99mTc][Tc(CO)3(H2O)3]+, is a versatile precursor for the development of radiotracers for single photon emission computed tomography (SPECT). A drawback of the 99mTc-tricarbonyl core is its lipophilicity, which can influence the pharmacokinetic properties of the SPECT imaging probe. Addition of polar pharmacological modifiers to 99mTc-tricarbonyl conjugates holds the promise to counteract this effect and provide tumor-targeting radiopharmaceuticals with improved hydrophilicities, e.g., resulting in a favorable fast renal excretion in vivo. We applied the "Click-to-Chelate" strategy for the assembly of a novel 99mTc-tricarbonyl labeled conjugate made of the tumor-targeting, modified bombesin binding sequence [Nle14]BBN(7-14) and the carbohydrate sorbitol as a polar modifier. The 99mTc-radiopeptide was evaluated in vitro with PC-3 cells and in Fox-1nu mice bearing PC-3 xenografts including a direct comparison with a reference conjugate lacking the sorbitol moiety. The glycated 99mTc-tricarbonyl peptide conjugate exhibited an increased hydrophilicity as well as a retained affinity toward the Gastrin releasing peptide receptor and cell internalization properties. However, there was no significant difference in vivo in terms of pharmacokinetic properties. In particular, the rate and route of excretion was unaltered in comparison to the more lipophilic reference compound. This could be attributed to the intrinsic properties of the peptide and/or its metabolites. We report a novel glycated (sorbitol-containing) alkyne substrate for the "Click-to-Chelate" methodology, which is potentially of general applicability for the development of 99mTc-tricarbonyl based radiotracers displaying an enhanced hydrophilicity.


Subject(s)
Bombesin/metabolism , Peptides/metabolism , Prostatic Neoplasms/metabolism , Radiopharmaceuticals/metabolism , Sorbitol/chemistry , Technetium/chemistry , Animals , Bombesin/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Indicators and Reagents/chemistry , Male , Mice , Peptides/chemistry , Prostatic Neoplasms/pathology , Radiopharmaceuticals/chemistry , Tomography, Emission-Computed, Single-Photon , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
10.
J Labelled Comp Radiopharm ; 62(8): 541-551, 2019 06 30.
Article in English | MEDLINE | ID: mdl-31115089

ABSTRACT

Several radionuclides of the transition metal manganese are known and accessible. Three of them, 51 Mn, 52m Mn, and 52g Mn, are positron emitters that are potentially interesting for positron emission tomography (PET) applications and, thus, have caught the interest of the radiochemical/radiopharmaceutical and nuclear medicine communities. This mini-review provides an overview of the production routes and physical properties of these radionuclides. For medical imaging, the focus is on the longer-living 52g Mn and its application for the radiolabelling of molecules and other entities exhibiting long biological half-lives, the imaging of manganese-dependent biological processes, and the development of bimodal PET/magnetic resonance imaging (MRI) probes in combination with paramagnetic nat Mn as a contrast agent.


Subject(s)
Manganese , Positron-Emission Tomography/methods , Animals , Humans , Insulin-Secreting Cells/cytology , Magnetic Resonance Imaging , Radioisotopes
11.
Eur J Nucl Med Mol Imaging ; 44(2): 286-295, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27573793

ABSTRACT

PURPOSE: All clinical 89Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of 89Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its 89Zr-DFO*-mAb complex with 89Zr-DFO-mAb. METHODS: The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. RESULTS: In 0.9 % NaCl 89Zr-DFO*-trastuzumab was more stable than 89Zr-DFO-trastuzumab; after 72 h incubation at 2-8 °C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for 89Zr-DFO*-trastuzumab and 89Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for 89Zr-DFO*-trastuzumab compared to 89Zr-DFO-trastuzumab. At 144 h p.i. for 89Zr-DFO*-trastuzumab and 89Zr-DFO-trastuzumab, the uptake in sternum was 0.92 ± 0.16 and 3.33 ± 0.32 % ID/g, in femur 0.78 ± 0.11 and 3.85, ± 0.80 and in knee 1.38 ± 0.23 and 8.20 ± 2.94 % ID/g, respectively. The uptake in bone decreased from 24 h to 144 h p.i. about two fold for the DFO* conjugate, while it increased about two fold for the DFO conjugate. CONCLUSIONS: Zr-DFO*-trastuzumab showed superior in vitro stability and in vivo performance when compared to 89Zr-DFO-trastuzumab. This makes the new octadentate DFO* chelator a candidate successor of DFO for future clinical 89Zr-immuno-PET.


Subject(s)
Deferoxamine/chemistry , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Positron-Emission Tomography/methods , Trastuzumab/immunology , Zirconium/pharmacokinetics , Animals , Cell Line, Tumor , Chelating Agents/chemistry , Drug Stability , Female , Isotope Labeling/methods , Mice , Mice, Nude , Organ Specificity , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution , Zirconium/chemistry
12.
J Pept Sci ; 23(1): 38-44, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28054429

ABSTRACT

Radiolabelled peptides with high specificity and affinity towards receptors that are overexpressed by tumour cells are used in nuclear medicine for the diagnosis (imaging) and therapy of cancer. In some cases, the sequences of peptides under investigations contain methionine (Met), an amino acid prone to oxidation during radiolabelling procedures. The formation of oxidative side products can affect the purity of the final radiopharmaceutical product and/or impair its specificity and affinity towards the corresponding receptor. The replacement of Met with oxidation resistant amino acid analogues, for example, norleucine (Nle), can provide a solution. While this approach has been applied successfully to different radiolabelled peptides, a Met → Nle switch only preserves the length of the amino acid side chain important for hydrophobic interactions but not its hydrogen-bonding properties. We report here the use of methoxinine (Mox), a non-canonical amino acid that resembles more closely the electronic properties of Met in comparison to Nle. Specifically, we replaced Met15 by Mox15 and Nle15 in the binding sequence of a radiometal-labelled human gastrin derivative [d-Glu10 ]HG(10-17), named MG11 (d-Glu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH2 ). A comparison of the physicochemical properties of 177 Lu-DOTA[X15 ]MG11 (X = Met, Nle, Mox) in vitro (cell internalization/externalization properties, receptor affinity (IC50 ), blood plasma stability and logD) showed that Mox indeed represents a suitable, oxidation-stable amino acid substitute of Met in radiolabelled peptide conjugates. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Gastrins/chemical synthesis , Heterocyclic Compounds, 1-Ring/chemistry , Homoserine/analogs & derivatives , Lutetium/chemistry , Oligopeptides/chemical synthesis , Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Amino Acid Substitution , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gastrins/metabolism , Gastrins/pharmacology , Heterocyclic Compounds, 1-Ring/metabolism , Heterocyclic Compounds, 1-Ring/pharmacology , Homoserine/chemistry , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Isotope Labeling , Methionine/chemistry , Norleucine/chemistry , Oligopeptides/metabolism , Oligopeptides/pharmacology , Oxidation-Reduction , Radiopharmaceuticals/metabolism , Radiopharmaceuticals/pharmacology , Thyroid Gland/cytology , Thyroid Gland/drug effects , Thyroid Gland/metabolism
13.
Bioconjug Chem ; 26(10): 2143-52, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26347939

ABSTRACT

Neurotensin (NT) is a regulatory peptide with nanomolar affinity toward NT receptors, which are overexpressed by different clinically relevant tumors. Its binding sequence, NT(8-13), represents a promising vector for the development of peptidic radiotracers for tumor imaging and therapy. The main drawback of the peptide is its short biological half-life due to rapid proteolysis in vivo. Herein, we present an innovative strategy for the stabilization of peptides using nonhydrolizable 1,4-disubstituted, 1,2,3-triazoles as amide bond surrogates. A "triazole scan" of the peptide sequence yielded novel NT(8-13) analogues with enhanced stability, retained receptor affinity, and improved tumor targeting properties in vivo. The synthesis of libraries of triazole-based peptidomimetics was achieved efficiently on solid support by a combination of Fmoc-peptide chemistry, diazo transfer reactions, and the Cu(I)-catalyzed alkyne azide cycloaddition (CuAAC) employing methods that are fully compatible with standard solid phase peptide synthesis (SPPS) chemistry. Thus, the amide-to-triazole substitution strategy may represent a general methodology for the metabolic stabilization of biologically active peptides.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Neurotensin/chemistry , Peptide Fragments/chemistry , Peptidomimetics/chemistry , Radioisotopes/chemistry , Triazoles/chemistry , Animals , Antineoplastic Agents/chemistry , Chemistry Techniques, Synthetic , Cycloaddition Reaction , Female , HT29 Cells , Half-Life , Humans , Isotope Labeling/methods , Lutetium/chemistry , Mice, Nude , Molecular Targeted Therapy/methods , Peptidomimetics/pharmacokinetics , Receptors, Neurotensin/metabolism , Structure-Activity Relationship , Tissue Distribution , Xenograft Model Antitumor Assays
15.
Eur J Nucl Med Mol Imaging ; 41(11): 2175-85, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25081821

ABSTRACT

The preparation of an Investigational Medicinal Product Dossier (IMPD) for a radiopharmaceutical to be used in a clinical trial is a challenging proposition for radiopharmaceutical scientists working in small-scale radiopharmacies. In addition to the vast quantity of information to be assembled, the structure of a standard IMPD is not well suited to the special characteristics of radiopharmaceuticals. This guideline aims to take radiopharmaceutical scientists through the practicalities of preparing an IMPD, in particular giving advice where the standard format is not suitable. Examples of generic IMPDs for three classes of radiopharmaceuticals are given: a small molecule, a kit-based diagnostic test and a therapeutic radiopharmaceutical.


Subject(s)
Nuclear Medicine , Radiopharmaceuticals/therapeutic use , Societies, Scientific , Clinical Trials as Topic , Drug Stability , Government Regulation , Nuclear Medicine/legislation & jurisprudence , Nuclear Medicine/standards , Quality Control , Reference Standards , Terminology as Topic
16.
J Labelled Comp Radiopharm ; 57(4): 275-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24327435

ABSTRACT

The replacement of amide bonds in the backbone of peptides by proteolytically stable 1,2,3-triazole isosteres can provide novel peptidomimetics with promising properties for the development of tumor-targeting radiopeptides. On the basis of our previous work with radiolabeled agonistic bombesin (BBN) derivatives of the sequence [Nle(14) ]BBN(7-14), we substituted selected amide bonds of the structurally closely related antagonistic peptide analog JMV594. With the exception of the C-terminal modification, amide-to-triazole substitutions tolerated by [Nle(14) ]BBN(7-14) without loss of biological function led to abolished receptor affinity in the case of JMV594. These findings provide an additional piece of evidence for the currently disputed differences in the modes of action of agonistic and antagonistic gastrin-releasing peptide receptor (GRPR)-targeting radiopeptides.


Subject(s)
Bombesin/analogs & derivatives , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/chemistry , Peptidomimetics/pharmacology , Prostatic Neoplasms/diagnostic imaging , Tomography, Emission-Computed, Single-Photon/methods , Amino Acid Sequence , Bombesin/antagonists & inhibitors , Bombesin/chemistry , Bombesin/metabolism , Cell Line, Tumor , Heterocyclic Compounds, 1-Ring/chemistry , Humans , Isotope Labeling , Lutetium , Male , Peptide Fragments/metabolism , Peptidomimetics/chemistry , Proteolysis , Radioisotopes , Triazoles/chemistry
17.
J Labelled Comp Radiopharm ; 57(10): 615-20, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25196257

ABSTRACT

This document is meant to complement Part B of the EANM 'Guidelines on current good radiopharmacy practice (cGRPP) in the preparation of radiopharmaceuticals' issued by the Radiopharmacy Committee of the European Association of Nuclear Medicine, covering small-scale in-house preparation of radiopharmaceuticals with automated modules. The aim is to provide more detailed and practice-oriented guidance to those who are involved in the small-scale preparation of radiopharmaceuticals, which are not intended for commercial purposes or distribution.


Subject(s)
Automation/methods , Pharmacy/methods , Radiopharmaceuticals/pharmacology , Automation/standards , Pharmacy/standards , Radiopharmaceuticals/administration & dosage
18.
ChemMedChem ; 19(3): e202300495, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38102942

ABSTRACT

DFO* is an octadentate chelator able to form highly stable chelates with Zirconium-89 (89 Zr) for nuclear medicinal applications in Positron Emission Tomography (PET).[1,2] The synthesis of DFO* and its scale-up remains challenging by reported synthetic protocols. For this reason, we set out to develop a de novo synthesis of a hydroxamate-containing building block suitable for the coupling to the commercially available DFO (desferrioxamine B, mesylate salt) yielding, after deprotection, the desired chelator DFO* in a more efficient procedure. Highlights of the new synthesis of DFO* reported herein are less synthetic steps and the isolation of the desired product DFO* by using solid phase extraction (SPE), thus avoiding tedious HPLC purification. DFO* is obtained in excellent purity (92-98 %) and an overall yield of approximately 29 %. In addition, the isolated trifluoroacetic acid (TFA)-salt of DFO* displays an improved solubility in organic solvents (DMSO, DMF, methanol), which will facilitate its use for the preparation of structurally diverse derivatives suitable for bioconjugation chemistry and the development of 89 Zr-labeled radiotracers.


Subject(s)
Chelating Agents , Radioisotopes , Zirconium , Positron-Emission Tomography/methods , Cell Line, Tumor
19.
Pharmaceutics ; 16(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38543286

ABSTRACT

The use of metabolically stabilized, radiolabeled somatostatin (SST) analogs ([68Ga]Ga/[177Lu]Lu-DOTA-TATE/TOC/NOC) is well established in nuclear medicine. Despite the pivotal role of these radioligands in the diagnosis and therapy of neuroendocrine tumors (NETs), their inability to interact with all five somatostatin receptors (SST1-5R) limits their clinical potential. [111In]In-AT2S is a radiolabeled DOTA-conjugate derived from the parent peptide SST-14 that exhibits high binding affinity to all SSTR subtypes, but its poor metabolic stability represents a serious disadvantage for clinical use. In order to address this issue, we have replaced strategic trans-amide bonds of [111In]In-AT2S with metabolically stable 1,4-disubstituted 1,2,3-triazole bioisosteres. From the five cyclic triazolo-peptidomimetics investigated, only [111In]In-XG1 combined a preserved nanomolar affinity for the SST1,2,3,5R subtypes in vitro and an improved stability in vivo (up to 17% of intact peptide 5 min postinjection (pi) versus 6% for [111In]In-AT2S). The involvement of neprilysin (NEP) in the metabolism of [111In]In-XG1 was confirmed by coadministration of Entresto®, a registered antihypertensive drug, in vivo releasing the selective and potent NEP-inhibitor sacubitrilat. A pilot SPECT/CT imaging study conducted in mice bearing hSST2R-positive xenografts failed to visualize the xenografts due to the pronounced kidney uptake (>200% injected activity (IA)/g at 4 h pi), likely the result of the formation of cationic metabolites. To corroborate the imaging data, the tumors and the kidneys were excised and analyzed with a γ-counter. Even if receptor-specific tumor uptake for [111In]In-XG1 could be confirmed (1.61% IA/g), further optimization is required to improve its pharmacokinetic properties for radiotracer development.

SELECTION OF CITATIONS
SEARCH DETAIL