Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 17(15): e2003765, 2021 04.
Article in English | MEDLINE | ID: mdl-33464713

ABSTRACT

Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.


Subject(s)
Bioprinting , Myocardial Infarction , Myocardial Reperfusion Injury , Animals , Bioengineering , Disease Models, Animal , Humans , Myocardial Infarction/therapy , Myocardium
2.
Biol Sex Differ ; 12(1): 31, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33879252

ABSTRACT

BACKGROUND: Preeclampsia is a dangerous cardiovascular disorder of pregnancy that leads to an increased risk of future cardiovascular and metabolic disorders. Much of the pathogenesis and mechanisms involved in cardiac health in preeclampsia are unknown. A novel anti-angiogenic protein, FKBPL, is emerging as having a potential role in both preeclampsia and cardiovascular disease (CVD). Therefore, in this study we aimed to characterise cardiac health and FKBPL regulation in the rat reduced uterine perfusion pressure (RUPP) and a 3D cardiac spheroid model of preeclampsia. METHODS: The RUPP model was induced in pregnant rats and histological analysis performed on the heart, kidney, liver and placenta (n ≥ 6). Picrosirius red staining was performed to quantify collagen I and III deposition in rat hearts, placentae and livers as an indicator of fibrosis. RT-qPCR was used to determine changes in Fkbpl, Icam1, Vcam1, Flt1 and Vegfa mRNA in hearts and/or placentae and ELISA to evaluate cardiac brain natriuretic peptide (BNP45) and FKBPL secretion. Immunofluorescent staining was also conducted to analyse the expression of cardiac FKBPL. Cardiac spheroids were generated using human cardiac fibroblasts and human coronary artery endothelial cells and treated with patient plasma from normotensive controls, early-onset preeclampsia (EOPE) and late-onset preeclampsia (LOPE); n = 3. FKBPL and CD31 expression was quantified by immunofluorescent labelling. RESULTS: The RUPP procedure induced significant increases in blood pressure (p < 0.001), collagen deposition (p < 0.001) and cardiac BNP45 (p < 0.05). It also induced a significant increase in cardiac FKBPL mRNA (p < 0.05) and protein  expression  (p < 0.01). RUPP placentae also exhibited increased collagen deposition and decreased Flt1 mRNA expression (p < 0.05). RUPP kidneys revealed an increase in average glomerular size (p < 0.05). Cardiac spheroids showed a significant increase in FKBPL expression when treated with LOPE plasma (p < 0.05) and a trend towards increased FKBPL expression following treatment with EOPE plasma (p = 0.06). CONCLUSIONS: The rat RUPP model induced cardiac, renal and placental features reflective of preeclampsia. FKBPL was increased in the hearts of RUPP rats and cardiac spheroids treated with plasma from women with preeclampsia, perhaps reflective of restricted angiogenesis and inflammation in this disorder. Elucidation of these novel FKBPL mechanisms in cardiac health in preeclampsia could be key in preventing future CVD.


Subject(s)
Pre-Eclampsia , Animals , Collagen , Endothelial Cells , Female , Humans , Perfusion , Placenta , Pregnancy , Pregnancy Complications, Cardiovascular , RNA, Messenger , Rats , Rats, Sprague-Dawley , Sex Characteristics , Tacrolimus Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL