Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.083
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nature ; 629(8012): 579-585, 2024 May.
Article in English | MEDLINE | ID: mdl-38750235

ABSTRACT

Towards realizing the future quantum internet1,2, a pivotal milestone entails the transition from two-node proof-of-principle experiments conducted in laboratories to comprehensive multi-node set-ups on large scales. Here we report the creation of memory-memory entanglement in a multi-node quantum network over a metropolitan area. We use three independent memory nodes, each of which is equipped with an atomic ensemble quantum memory3 that has telecom conversion, together with a photonic server where detection of a single photon heralds the success of entanglement generation. The memory nodes are maximally separated apart for 12.5 kilometres. We actively stabilize the phase variance owing to fibre links and control lasers. We demonstrate concurrent entanglement generation between any two memory nodes. The memory lifetime is longer than the round-trip communication time. Our work provides a metropolitan-scale testbed for the evaluation and exploration of multi-node quantum network protocols and starts a stage of quantum internet research.

2.
FASEB J ; 38(5): e23501, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38411462

ABSTRACT

In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.


Subject(s)
Hedgehog Proteins , Neural Stem Cells , Animals , Mice , Neurons , Neurogenesis , Brain , Mammals
3.
Nano Lett ; 24(2): 657-666, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38180824

ABSTRACT

The cooling power provided by radiative cooling is unwanted during cold hours. Therefore, self-adaptive regulation is desired for radiative cooling, especially in all-weather applications. However, current routes for radiative cooling regulation are constrained by substrates and complicated processing. Here, self-adaptive radiative cooling regulation on various potential substrates (transparent wood, PET, normal glass, and cement) was achieved by a Fabry-Perot structure consisting of a silver nanowires (AgNWs) bottom layer, PMMA spacer, and W-VO2 top layer. The emissivity-modulated transparent wood (EMTW) exhibits an emissivity contrast of 0.44 (ε8-13-L = ∼0.19 and ε8-13-H = ∼0.63), which thereby yields considerable energy savings across different climate zones. The emissivity contrast can be adjusted by varying the spinning parameters during the deposition process. Positive emissivity contrast was also achieved on three other industrially relevant substrates via this facile and widely applicable route. This proves the great significance of the approach to the promotion and wide adoption of radiative cooling regulation concept in the built environment.

4.
J Am Chem Soc ; 146(10): 6628-6637, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38359144

ABSTRACT

Currently, the desired research focus in energy storage technique innovation has been gradually shifted to next-generation aqueous batteries holding both high performance and sustainability. However, aqueous Zn-I2 batteries have been deemed to have great sustainable potential, owing to the merits of cost-effective and eco-friendly nature. However, their commercial application is hindered by the serious shuttle effect of polyiodides during reversible operations. In this work, a Janus functional binder based on chitosan (CTS) molecules was designed and prepared; the polar terminational groups impart excellent mechanical robustness to hybrid binders; meanwhile, it can also deliver isochronous enhancement on physical adsorption and redox kinetics toward I2 species. By feat of highly effective remission to shuttle effect, the CTS cell exhibits superb electrochemical storage capacities with long-term robustness, specifically, 144.1 mAh g-1, at a current density of 0.2 mA g-1 after 1500 cycles. Simultaneously, the undesired self-discharging issue could be also well-addressed; the Coulombic efficiency could remain at 98.8 % after resting for 24 h. More importantly, CTS molecules endow good biodegradability and reusable properties; after iodine species were reloaded, the recycled devices could also deliver specific capacities of 73.3 mAh g-1, over 1000 cycles. This Janus binder provides a potential synchronous solution to realize high comprehensive performance with high iodine utilization and further make it possible for sustainable Zn-I2 batteries.

5.
Breast Cancer Res ; 26(1): 100, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867307

ABSTRACT

BACKGROUND: Immunohistochemistry (IHC) and in situ hybridization (ISH) remain standard biomarkers for therapeutic decisions in human epidermal growth factor 2 (HER2)-positive breast cancers (BCs); however, they are insufficient to explain the heterogeneous anti-HER2 response. METHODS: We aimed to investigate the correlation of in situ HER2 RNA expression (isHRE), using RNAscope, with HER2 biomarkers and the impact of isHRE on the pathological complete response (pCR) rates of 278 patients with HER2 IHC/fluorescence ISH (FISH)-positive BC receiving neoadjuvant chemotherapy and anti-HER2 targeted treatment (NCTT). RESULTS: We validated HER2 RNAscope scoring as a semiquantitative method to determine isHRE and showed a positive correlation between RNAscope scores and pCR rates, with particularly different rates between patients with a score of 5 versus 1-4 BCs (66.7% vs. 15.9%, p < 0.0001). There were higher RNAscope scores and pCR rates in patients with HER2 IHC 3 + versus IHC 2+/FISH + BCs and HER2 RNAscope scores and pCR rates showed similar non-linear positive correlations with HER2 copy numbers and HER2/centromere 17 ratios. Moreover, in each HER2-positive IHC/FISH category, higher pCR rates were observed in patients with RNAscope scores of 5 versus 1-4 BC. Patients achieving pCR had BCs with notably higher HER2 RNAscope scores. Multivariate analysis identified HER2 RNAscope 5 as a strong pCR predictor [odds ratio = 10.865, p < 0.001]. The combined impact of multivariate analysis-defined pCR predictors demonstrated that a higher pCR rate was observed in patients with a score of 5 versus a score of 1-4 BCs regardless of the status of hormone receptor and mono-or dual anti-HER2 blockade. CONCUSIONS: Our results demonstrated that high isHRE (RNAscope score 5) is a strong pCR predictor in patients with HER2-positive BCs receiving NCTT, highlighting the complementary role of isHRE in stratifying HER2 status in tissue. Such stratification is relevant to anti-HER2 therapeutic efficacy, particularly using the cutoff of score 1-4 versus 5.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , In Situ Hybridization, Fluorescence , Neoadjuvant Therapy , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Neoadjuvant Therapy/methods , Middle Aged , Adult , Biomarkers, Tumor/metabolism , Aged , Treatment Outcome , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Molecular Targeted Therapy , Immunohistochemistry , Prognosis , Trastuzumab/therapeutic use , Pathologic Complete Response
6.
Int J Cancer ; 155(7): 1268-1277, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38924042

ABSTRACT

Several life-prolonging therapies for metastatic castration-resistant prostate cancer (mCRPC) are available, including radium-223 dichloride (223Ra), which was approved based on phase 3 data demonstrating improved overall survival (OS) and a favorable safety profile. To date, real-world evidence for 223Ra use in Taiwan is from three studies of <50 patients. This observational study (NCT04232761) enrolled male patients with histologically/cytologically confirmed mCRPC with bone metastases from centers across Taiwan. 223Ra was prescribed as part of routine practice by investigators. Patients with prior 223Ra treatment were excluded. The primary objective was to assess 223Ra safety; secondary objectives evaluated efficacy parameters, including OS. Overall, 224 patients were enrolled. Most patients had an Eastern Cooperative Oncology Group performance status of 0/1 (79.0%) and ≤20 bone metastases (69.2%); no patients had visceral metastases. 223Ra was first- or second-line therapy in 23.2% and 47.7% of patients, respectively. The total proportion of patients who received 5-6 223Ra cycles was 68.8%; this proportion was greater with first-line use (84.3%) than second- (65.7%) or third-/fourth-line use (64.1%). More chemotherapy-naïve patients (61.9%) completed the 6-cycle 223Ra treatment than chemotherapy-exposed patients (56.7%). Any-grade treatment-emergent adverse events (TEAEs) and serious TEAEs occurred in 54.0% and 28.6% of patients, respectively, while 12% experienced 223Ra-related adverse events. Median OS was 15.7 months (95% confidence interval 12.13-19.51); patients receiving 5-6 223Ra injections and earlier 223Ra use had longer OS than those receiving fewer injections and later 223Ra use. 223Ra provides a well-tolerated and effective treatment for Taiwanese patients with mCRPC and bone metastases.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms, Castration-Resistant , Radium , Humans , Male , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/mortality , Prostatic Neoplasms, Castration-Resistant/drug therapy , Radium/therapeutic use , Radium/adverse effects , Aged , Bone Neoplasms/secondary , Bone Neoplasms/radiotherapy , Prospective Studies , Middle Aged , Aged, 80 and over , Taiwan/epidemiology , Treatment Outcome , Radioisotopes/therapeutic use , Radioisotopes/adverse effects
7.
Curr Issues Mol Biol ; 46(3): 2155-2165, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38534755

ABSTRACT

An increased neutrophil-to-lymphocyte ratio (NLR) is a poor prognostic biomarker in various types of cancer, because it reflects the inhibition of lymphocytes in the circulation and tumors. In urologic cancers, upper tract urothelial carcinoma (UTUC) is known for its aggressive features and lack of T cell infiltration; however, the association between neutrophils and suppressed T lymphocytes in UTUC is largely unknown. In this study, we examined the relationship between UTUC-derived factors and tumor-associated neutrophils or T lymphocytes. The culture supernatant from UTUC tumor tissue modulated neutrophils to inhibit T cell proliferation. Among the dominant factors secreted by UTUC tumor tissue, apolipoprotein A1 (Apo-A1) exhibited a positive correlation with NLR. Moreover, tumor-infiltrating neutrophils were inversely correlated with tumor-infiltrating T cells. Elevated Apo-A1 levels in UTUC were also inversely associated with the population of tumor-infiltrating T cells. Our findings indicate that elevated Apo-A1 expression in UTUC correlates with tumor-associated neutrophils and T cells. This suggests a potential immunomodulatory effect on neutrophils and T cells within the tumor microenvironment, which may represent therapeutic targets for UTUC treatment.

8.
Anal Chem ; 96(19): 7487-7496, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695134

ABSTRACT

Cinchona alkaloid derivatives as Brønsted base catalysts have attracted considerable attention in the field of asymmetric catalysis. However, their potential application as chiral solvating agents has not been described. In this research, we investigated the use of the Cinchona alkaloid dimer, namely, (DHQ)2PHAL, as a chiral solvating agent for discerning various mandelic acid derivatives through 1H NMR spectroscopy. The addition of catalytic amounts of DMAP facilitated this process. Our experimental results demonstrate that dimeric (DHQ)2PHAL exhibits remarkable chiral discrimination properties regarding the diagnostic split protons of 1H NMR signals (including 24 examples, up to 0.321 ppm). Furthermore, it serves as an excellent chiral discriminating agent and provides good resolution for racemic chiral phosphoric acid as determined by 31P NMR spectroscopy. The quality of enantiodifferentiation has also been evaluated by means of the parameter "resolution (Rs)". Significantly, this class of CSAs based on (alkaloid)2linker systems with an azaaromatic linker can be directly employed, which is commercially available in an enantiopure form at very low cost and exhibits promising potential in determining the enantiopurity of α-hydroxy acids by chemoselective and biocatalytic reactions.

9.
Article in English | MEDLINE | ID: mdl-38969945

ABSTRACT

PURPOSE: In East Asia, the incidence of breast cancer has been increasing rapidly, particularly among premenopausal women. An elevated ratio of estrogen-DNA adducts was linked to a higher risk of breast cancer. The present study explored the influence of the interaction between base excision repair (BER) gene polymorphisms and estrogen-DNA adducts on breast cancer risk. METHODS: We conducted a case-control study comprising healthy volunteers and individuals with benign breast disease (control arm, n = 176) and patients with invasive carcinoma or carcinoma in situ (case arm, n = 177). Genotyping for BER-related genes, including SMUG1, OGG1, ERCC5, and APEX1, was performed. A logistic regression model, incorporating interactions between gene polymorphisms, estrogen-DNA adduct ratio, and clinical variables, was used to identify the risk factors for breast cancer. RESULTS: Univariate analysis indicated marginal associations between breast cancer risk and APEX1 rs1130409 T > G (P = 0.057) and APEX1 rs1760944 T > G (P = 0.065). Multivariate regression analysis revealed significant associations with increased breast cancer risk for APEX1_rs1130409 (GT/GG versus TT) combined with a natural logarithmic value of the estrogen-DNA adduct ratio (estimated OR 1.164, P = 0.023) and premenopausal status with an estrogen-DNA adduct ratio > 2.93 (estimated OR 2.433, P = 0.001). CONCLUSION: APEX1_rs1130409 (GT/GG versus TT) polymorphisms, which are related to decreased BER activity, combined with an increased ratio of estrogen-DNA adducts, increase the risk of breast cancer in East Asian women.

10.
Small ; 20(28): e2309750, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38299490

ABSTRACT

Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd2+/Zn2+ atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (SBET = 87.65m2 g-1), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H2 evolution rate of 18.75 mmol g-1 h-1 with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.

11.
Small ; : e2402349, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39114871

ABSTRACT

The aesthetic demand has become an imperative challenge to advance the practical and commercial application of daytime radiative cooling technology toward mitigating climate change. Meanwhile, the application of radiative cooling materials usually focuses on the building surface, related tightly to fire safety. Herein, the absorption and reflection spectra of organic and inorganic colorants are first compared in solar waveband, finding that iron oxides have higher reflectivity in NIR region. Second, three kinds of iron oxides-based colorants are selected to combine porous structure and silicon-modified ammonium polyphosphate (Si-APP) to engineer colored polyurethane-based (PU) coating, thus enhancing the reflectivity and flame retardancy. Together with reflectivity of more than 90% in near-infrared waveband and infrared emissivity of ≈91%, average temperature drops of ≈5.7, ≈7.9, and ≈3.8 °C are achieved in porous PU/Fe2O3/Si-APP, porous PU/Fe2O3·H2O/Si-APP, and porous PU/Fe3O4·H2O/Si-APP, compared with dense control samples. The catalysis effect of iron oxides in the cross-linking reaction of pyrolysis products and dehydration mechanism of Si-APP enable PU coating to produce an intumescent and protective char residue. Consequently, PU composite coatings demonstrate desirable fire safety. The ingenious choice of colorants effectively minimizes the solar heating effect and trades off the daytime radiative cooling and aesthetic appearance requirement.

12.
Small ; 20(11): e2311024, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38239090

ABSTRACT

Sodium-ion batteries (SIBs) have gradually become one of the most promising energy storage techniques in the current era of post-lithium-ion batteries. For anodes, transitional metal selenides (TMSe) based materials are welcomed choices , owing to relatively higher specific capacities and enriched redox active sites. Nevertheless, current bottlenecks are blamed for their poor intrinsic electronic conductivities, and uncontrollable volume expansion during redox reactions. Given that, an interfacial-confined isochronous conversion strategy is proposed, to prepare orthorhombic/cubic biphasic TMSe heterostructure, namely CuSe/Cu3 VSe4 , through using MXene as the precursor, followed by Cu/Se dual anchorage. As-designed biphasic TMSe heterostructure endows unique hierarchical structure, which contains adequate insertion sites and diffusion spacing for Na ions, besides, the surficial pseudocapacitive storage behaviors can be also proceeded like 2D MXene. By further investigation on electronic structure, the theoretical calculations indicate that biphasic CuSe/Cu3 VSe4 anode exhibits well-enhanced properties, with smaller bandgap and thus greatly improves intrinsic poor conductivities. In addition, the dual redox centers can enhance the electrochemical Na ions storage abilities. As a result, the as-designed biphasic TMSe anode can deliver a reversible specific capacity of 576.8 mAh g-1 at 0.1 A g-1 , favorable Na affinity, and reduced diffusion barriers. This work discloses a synchronous solution toward demerits in conductivities and lifespan, which is inspiring for TMSe-based anode development in SIBs systems.

13.
Chemistry ; 30(17): e202303918, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38102982

ABSTRACT

The photoluminescent properties of lanthanide complexes have been thoroughly investigated; however, there have been much fewer studies showcasing their potential use in ionizing radiation detection. In this work, we delve into the photo- and radio-induced luminescence of a series of lanthanide-bearing organic-inorganic hybrids and their potential as a platform for X-ray scintillation and imaging. The judicious synergy between lanthanide cations and 2,6-di(1H-pyrazol-1-yl)isonicotinate (bppCOO-) ligands affords six new materials with three distinct structures. Notably, Eu-bppCOO-1 and Tb-bppCOO-2 display sharp fingerprint X-ray-excited luminescence (XEL), the intensities of which can be linearly correlated with the X-ray dose rates over a broad dynamic range (0.007-4.55 mGy s-1). Moreover, the X-ray sensing efficacies of Eu-bppCOO-1 and Tb-bppCOO-2 were evaluated, showing that Tb-bppCOO-2 features a lower detection limit of 4.06 µGy s-1 compared to 14.55 µGy s-1 of Eu-bppCOO-1. Given the higher X-ray sensitivity and excellent radiation stability of Tb-bppCOO-2, we fabricated a flexible scintillator film for X-ray imaging by embedding finely ground Tb-bppCOO-2 in the polydimethylsiloxane (PDMS) polymer. The resulting scintillator film can be utilized for high-resolution X-ray imaging with a spatial resolution of approximately 7 lp mm-1.

14.
BMC Cancer ; 24(1): 121, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267903

ABSTRACT

BACKGROUND: Programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) are the two most common immune checkpoints targeted in triple-negative breast cancer (BC). Refining patient selection for immunotherapy is non-trivial and finding an appropriate digital pathology framework for spatial analysis of theranostic biomarkers for PD-1/PD-L1 inhibitors remains an unmet clinical need. METHODS: We describe a novel computer-assisted tool for three-dimensional (3D) imaging of PD-L1 expression in immunofluorescence-stained and optically cleared BC specimens (n = 20). The proposed 3D framework appeared to be feasible and showed a high overall agreement with traditional, clinical-grade two-dimensional (2D) staining techniques. Additionally, the results obtained for automated immune cell detection and analysis of PD-L1 expression were satisfactory. RESULTS: The spatial distribution of PD-L1 expression was heterogeneous across various BC tissue layers in the 3D space. Notably, there were six cases (30%) wherein PD-L1 expression levels along different layers crossed the 1% threshold for admitting patients to PD-1/PD-L1 inhibitors. The average PD-L1 expression in 3D space was different from that of traditional immunohistochemistry (IHC) in eight cases (40%). Pending further standardization and optimization, we expect that our technology will become a valuable addition for assessing PD-L1 expression in patients with BC. CONCLUSION: Via a single round of immunofluorescence imaging, our approach may provide a considerable improvement in patient stratification for cancer immunotherapy as compared with standard techniques.


Subject(s)
B7-H1 Antigen , Breast Neoplasms , Humans , Female , Imaging, Three-Dimensional , Immune Checkpoint Inhibitors , Ligands , Programmed Cell Death 1 Receptor , Coloring Agents , Computers
15.
Langmuir ; 40(9): 4852-4859, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38382061

ABSTRACT

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiO@NCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs.

16.
Inorg Chem ; 63(17): 7555-7559, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38624233

ABSTRACT

Noncentrosymmetric chalcogenides are promising candidates for infrared nonlinear-optical (NLO) crystals, and exploring high-performance ones is a hot topic and challengeable. Herein, the combination of AgQ4, InQ4, and SiQ4 (Q = S, Se) units with different S/Se ratios resulted in the discovery of the tetrahedral chalcogenides Ag2In2SiS4Se2 (1) and Ag2In2SiS5Se (2). They both crystallize in the monoclinic Cc space group with different local structures. Co-occupied S/Se sites only exist in 2, and the arrangement of [In2SiQ3] six-membered rings builds different helical chains and 3D [(In2SiQ6)2-]n polyanionic frameworks in 1 and 2. They show balanced NLO performances, including phase-matchable moderate NLO responses (0.7 and 0.5 × AGS) and enhanced laser-induced damage thresholds (4.5 and 5.1 × AGS). Theoretical calculations reveal that their NLO responses are predominantly contributed by the AgQ4 and InQ4 units.

17.
Inorg Chem ; 63(9): 4017-4021, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38367266

ABSTRACT

As one of the potential candidates of nonlinear-optical (NLO) materials, rare-earth chalcophosphates have demonstrated promising properties. Here, KREP2S6 (RE = Sm, Gd, Tb, Dy) were synthesized using the facile RE2O3-B-S solid-state method. They crystallize with a monoclinic chiral P21 structure, and their layer structures are built by isolated ethane-like P2S6 dimers and RES8 bicapped trigonal prisms built {[RE2S15]24-}∞ layers. By comparing the structures with related ones, the change of the alkali metal or RE3+ ions can cause structural transformation. Their band gaps are tunable between 2.58 and 3.79 eV, and their powder samples exhibit good NLO properties. Theoretical calculations suggest that the NLO properties are mainly contributed by P2S6 units and {[RE2S15]24-}∞ layers synergistically, in which {[RE2S15]24-}∞ layers and P2S6 units dominate the contribution to the band gap and second-harmonic-generation response, respectively. This work enriches the application of rare-earth chalcophosphates as NLO materials.

18.
Fish Shellfish Immunol ; : 109852, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173982

ABSTRACT

Cottonseed meal (CSM) and cottonseed protein concentrate (CPC) serve as protein alternatives to fish meal and soybean meal in the feed industry. However, the presence of gossypol residue in CSM and CPC can potentially trigger severe intestinal inflammation, thereby restricting the widespread utilization of these two protein sources. Probiotics are widely used to prevent or alleviate intestinal inflammation, but their efficacy in protecting fish against gossypol-induced enteritis remains uncertain. Here, the protective effect of Pediococcus pentosaceus, a strain isolated from the gut of Nile tilapia (Oreochromis niloticus), was evaluated. Three diets, control diet (CON), gossypol diet (GOS) and GOS supplemented with P. pentosaceus YC diet (GP), were used to feed Nile tilapia for 10 weeks. After the feeding trial, P. pentosaceus YC reduced the activity of myeloperoxidase (MPO) in the proximal intestine (PI) and distal intestine (DI). Following a 7-day exposure to Aeromonas hydrophila, the addition of P. pentosaceus YC was found to increase the survival rate of the fish. P. pentosaceus YC significantly inhibited the oxidative stress caused by gossypol, which was evidenced by lower reactive oxygen species (ROS) and malondialdehyde (MDA), as well as higher activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in PI and DI. Addition of P. pentosaceus YC significantly inhibited enteritis, with the lower expression of pro-inflammatory cytokines (il-1ß, il-6, il-8) and higher expression of anti-inflammatory cytokines tgf-ß. RNA-seq analysis indicated that P. pentosaceus YC supplementation significantly inhibited nlrc3 and promoted nf-κb expression in PI and DI, and the siRNA interference experiment in vivo demonstrated that intestinal inflammation was mediated by NLRC3/NF-κB/IL-1ß signaling pathway. Fecal bacteria transplantation experiment demonstrated that gut microbiota mediated the protective effect of P. pentosaceus YC. These findings offer valuable insights into the application of P. pentosaceus YC for alleviating gossypol-induced intestinal inflammation in fish.

19.
Inorg Chem ; 63(6): 3083-3090, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38278552

ABSTRACT

Two-dimensional double perovskites have experienced rapid development due to their outstanding optoelectronic properties and diverse structural characteristics. However, the synthesis of high-performance multifunctional compounds and the regulation of their properties still lack relevant examples. Herein, we synthesized two multifunctional compounds, (C6H14N)4AgSbBr8 (1) and (F2-C6H12N)4AgSbBr8 (2), which exhibit high solid-state phase transition temperature, bistable dielectric constant switching, second harmonic generation (SHG), and bright emission. Through H/F substitution, the transition temperature increases and achieves a smaller band gap attributed to reduced interlayer spacing. Furthermore, we investigated the broad emission mechanism of the compounds through first-principles calculation and variable-temperature fluorescence, confirming the presence of the STE1 emission. Our work provides insight into the further development of multifunctional compounds and chemical modification that enhances compound properties.

20.
Phys Chem Chem Phys ; 26(3): 2341-2354, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165967

ABSTRACT

Polarization, as an important characterization of the symmetry breaking systems, has attracted tremendous attention in two-dimensional (2D) materials. Due to their significant symmetry breaking, Janus 2D ferrovalley materials provide a desirable platform to investigate the charge, spin, and valley polarization, as well as their coupling effects. Herein, using first-principles calculations, the polarization properties of charge, spin, and valley in Janus VSiGeZ4 (Z = N, P, and As) monolayers are systematically studied. The mirror symmetry breaking leads to a non-zero dipole moment and surface work function difference, indicating the presence of out-of-plane charge polarization. Magnetic properties calculations demonstrate that VSiGeN4 is a 2D-XY magnet with a Berezinskii-Kosterlitz-Thouless temperature of 342 K, while VSiGeP4 and VSiGeAs4 have an out-of-plane magnetization with a Curie temperature below room temperature. The magnetization can be rotated by applying biaxial strain, allowing manipulation of the spin polarization via nonmagnetic means. The spontaneous valley polarization is predicted to be 46, 49, and 70 meV for VSiGeN4, VSiGeP4, and VSiGeAs4, respectively, whose physical origin can be elucidated by employing the model analysis. In particular, the biaxial strain can induce the valley polarization switching from the valence (conduction) band to conduction (valence) band, but it hardly changes the valley polarization strength. Meanwhile, the valley extremum is transformed from the K' (K) to K (K') points. The present work not only provides an underlying insight into the polarization properties of Janus VSiGeZ4 but also offers a class of promising materials for spintronic and valleytronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL