Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 22(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502342

ABSTRACT

Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.


Subject(s)
Antihypertensive Agents/pharmacology , Cell Differentiation , Cholesterol/metabolism , Oligodendroglia/drug effects , PPAR gamma/metabolism , Protective Agents/pharmacology , Telmisartan/pharmacology , Animals , Oligodendroglia/metabolism , PPAR gamma/genetics , Rats , Rats, Wistar
2.
Int J Mol Sci ; 22(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34445564

ABSTRACT

Niemann-Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.


Subject(s)
Adenosine A2 Receptor Agonists/pharmacology , Cholesterol/metabolism , Myelin Sheath/pathology , Niemann-Pick Disease, Type C/pathology , Receptor, Adenosine A2A/metabolism , Animals , Humans , Myelin Sheath/drug effects , Niemann-Pick Disease, Type C/drug therapy , Niemann-Pick Disease, Type C/metabolism
3.
Health Res Policy Syst ; 18(1): 106, 2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32948215

ABSTRACT

BACKGROUND: There have been claims that health research is not satisfactorily addressing healthcare challenges. A specific area of concern is the adequacy of the mechanisms used to plan investments in health research. However, the way organisations within countries devise research agendas has not been systematically reviewed. This study seeks to understand the legal basis, the actors and the processes involved in setting research agendas in major public health research funding organisations. METHODS: We reviewed information relating to the formulation of strategic plans by 11 public funders in nine high-income countries worldwide. Information was collected from official websites and strategic plan documents in English, French, Italian and Spanish between January 2019 and December 2019, by means of a conceptual framework and information abstraction form. RESULTS: We found that the formulation of a strategic plan is a common and well-established practice in shaping research agendas across international settings. Most of the organisations studied are legally required to present a multi-year strategic plan. In some cases, legal provisions may set rules for actors and processes and may establish areas of research and/or types of research to be funded. Commonly, the decision-making process involves both internal and external stakeholders, with the latter being generally government officials and experts, and few examples of the participation of civil society. The process also varies across organisations depending on whether there is a formal requirement to align to strategic priorities developed by an overarching entity at national level. We also found that, while actors and their interactions were traceable, information, sources of information, criteria and the mechanisms/tools used to shape decisions were made less explicit. CONCLUSIONS: A complex picture emerges in which multiple interactive entities appear to shape research plans. Given the complexity of the influences of different parties and factors, the governance of the health research sector would benefit from a traceable and standardised knowledge-based process of health research strategic planning. This would provide an opportunity to demonstrate responsible budget stewardship and, more importantly, to make efforts to remain responsive to healthcare challenges, research gaps and opportunities.


Subject(s)
Delivery of Health Care , Public Health , Developed Countries , Humans , Italy
4.
Int J Mol Sci ; 21(19)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003644

ABSTRACT

An adequate protection from oxidative and inflammatory reactions, together with the promotion of oligodendrocyte progenitor (OP) differentiation, is needed to recover from myelin damage in demyelinating diseases. Mitochondria are targets of inflammatory and oxidative insults and are essential in oligodendrocyte differentiation. It is known that nuclear factor-erythroid 2-related factor/antioxidant responsive element (NRF2/ARE) and peroxisome proliferator-activated receptor gamma/PPAR-γ response element (PPAR-γ/PPRE) pathways control inflammation and overcome mitochondrial impairment. In this study, we analyzed the effects of activators of these pathways on mitochondrial features, protection from inflammatory/mitochondrial insults and cell differentiation in OP cultures, to depict the specificities and similarities of their actions. We used dimethyl-fumarate (DMF) and pioglitazone (pio) as agents activating NRF2 and PPAR-γ, respectively, and two synthetic hybrids acting differently on the NRF2/ARE pathway. Only DMF and compound 1 caused early effects on the mitochondria. Both DMF and pio induced mitochondrial biogenesis but different antioxidant repertoires. Moreover, pio induced OP differentiation more efficiently than DMF. Finally, DMF, pio and compound 1 protected from tumor necrosis factor-alpha (TNF-α) insult, with pio showing faster kinetics of action and compound 1 a higher activity than DMF. In conclusion, NRF2 and PPAR-γ by inducing partially overlapping pathways accomplish complementary functions aimed at the preservation of mitochondrial function, the defense against oxidative stress and the promotion of OP differentiation.


Subject(s)
Mitochondria/genetics , NF-E2-Related Factor 2/genetics , Oligodendroglia/drug effects , PPAR gamma/genetics , Animals , Antioxidants/pharmacology , Cell Differentiation/drug effects , Dimethyl Fumarate/pharmacology , Humans , Mitochondria/drug effects , Neurogenesis/drug effects , Neurogenesis/genetics , Oligodendrocyte Precursor Cells/drug effects , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/metabolism , Organelle Biogenesis , Oxidative Stress/drug effects , Oxidative Stress/genetics , Pioglitazone/pharmacology , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/genetics
5.
Int J Mol Sci ; 21(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290408

ABSTRACT

Lead (Pb) exposure in early life affects brain development resulting in cognitive and behavioral deficits. Epidemiologic and experimental evidence of sex as an effect modifier of developmental Pb exposure is emerging. In the present study, we investigated Pb effects on behavior and mechanisms of neuroplasticity in the hippocampus and potential sex differences. To this aim, dams were exposed, from one month pre-mating to offspring weaning, to Pb via drinking water at 5 mg/kg body weight per day. In the offspring of both sexes, the longitudinal assessment of motor, emotional, and cognitive end points was performed. We also evaluated the expression and synaptic distribution of N-methyl-D-Aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits at post-natal day (pnd) 23 and 70 in the hippocampus. Neonatal motor patterns and explorative behavior in offspring were affected in both sexes. Pb effects in emotional response and memory retention were observed in adult females only, preceded by increased levels of GluN2A and GluA1 subunits at the post-synapse at pnd 23. These data suggest that Pb exposure during development affects glutamatergic receptors distribution at the post-synaptic spine in females. These effects may contribute to alterations in selected behavioral domains.


Subject(s)
Developmental Disabilities/etiology , Disease Susceptibility , Environmental Exposure/adverse effects , Lead/adverse effects , Mental Disorders/etiology , Animals , Behavior, Animal , Brain/metabolism , Developmental Disabilities/diagnosis , Disease Models, Animal , Female , Hippocampus/metabolism , Lead/blood , Lead/metabolism , Male , Mental Disorders/diagnosis , Neuronal Plasticity/drug effects , Rats , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics
6.
J Neuroinflammation ; 13(1): 149, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27301868

ABSTRACT

BACKGROUND: Autism spectrum disorders (ASD) are emerging as polygenic and multifactorial disorders in which complex interactions between defective genes and early exposure to environmental stressors impact on the correct neurodevelopment and brain processes. Organophosphate insecticides, among which chlorpyrifos (CPF), are widely diffused environmental toxicants associated with neurobehavioral deficits and increased risk of ASD occurrence in children. Oxidative stress and dysregulated immune responses are implicated in both organophosphate neurodevelopmental effects and ASD etiopathogenesis. BTBR T+tf/J mice, a well-studied model of idiopathic autism, show several behavioral and immunological alterations found in ASD children, and we recently showed that CPF gestational exposure strengthened some of these autistic-like traits. In the present study, we aimed at investigating whether the behavioral effects of gestational CPF administration are associated with brain increased oxidative stress and altered lipid mediator profile. METHODS: Brain levels of F2-isoprostanes (15-F2t-IsoP), as index of in vivo oxidative stress, and prostaglandin E2 (PGE2), a major arachidonic acid metabolite released by immune cells and by specific glutamatergic neuron populations mainly in cortex and hippocampus, were assessed by specific enzyme-immuno assays in brain homogenates from BTBR T+tf/J and C57Bl6/J mice, exposed during gestation to either vehicle or CPF. Measures were performed in mice of both sexes, at different postnatal stages (PNDs 1, 21, and 70). RESULTS: At birth, BTBR T+tf/J mice exhibited higher baseline 15-F2t-IsoP levels as compared to C57Bl6/J mice, suggestive of greater oxidative stress processes. Gestational treatment with CPF-enhanced 15-F2t-IsoP and PGE2 levels in strain- and age-dependent manner, with 15-F2t-IsoP increased in BTBR T+tf/J mice at PNDs 1 and 21, and PGE2 elevated in BTBR T+tf/J mice at PNDs 21 and 70. At PND 21, CPF effects were sex-dependent being the increase of the two metabolites mainly associated with male mice. CPF treatment also induced a reduction of somatic growth, which reached statistical significance at PND 21. CONCLUSIONS: These findings indicate that the autistic-like BTBR T+tf/J strain is highly vulnerable to environmental stressors during gestational period. The results further support the hypothesis that oxidative stress might be the link between environmental neurotoxicants such as CPF and ASD. The increased levels of oxidative stress during early postnatal life could result in delayed and long-lasting alterations in specific pathways relevant to ASD, of which PGE2 signaling represents an important one.


Subject(s)
Autistic Disorder/etiology , Brain/metabolism , Chlorpyrifos/toxicity , Cholinesterase Inhibitors/toxicity , Dinoprostone/metabolism , Oxidative Stress/drug effects , Prenatal Exposure Delayed Effects , Animals , Animals, Newborn , Autistic Disorder/pathology , Brain/drug effects , Disease Models, Animal , Female , Fetal Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Oxidative Stress/physiology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , T-Box Domain Proteins/genetics
7.
Brain Behav Immun ; 55: 225-235, 2016 07.
Article in English | MEDLINE | ID: mdl-26593276

ABSTRACT

Repeated stimulation of TLR4 signaling by lipopolysaccharide (LPS) in microglia induces a state of tolerance/sensitization consisting in the reprogramming of the expression of pro-inflammatory genes in favor of anti-inflammatory ones. The molecular mechanisms underlying this adaptive response are far to be elucidated. Glycogen synthase kinase 3 (GSK3) has emerged as crucial regulator of TLR signaling, mediating the balance between pro- and anti-inflammatory functions in both periphery and central nervous system. The present study extends this notion identifying GSK3 as part of the molecular machinery regulating the LPS-adaptive response in microglial cells, by using primary microglial cultures and organotypic hippocampal slices (OHSCs). We found that lithium chloride (LiCl), a widely used GSK3 inhibitor and the mainstay treatment for bipolar disorder, reinforced the LPS adaptive response by enhancing both downregulation of pro-inflammatory genes (inducible nitric oxide synthase, interleukin 1ß, interleukin 6, tumor necrosis factor α), and upregulation of genes typically associated to anti-inflammatory functions (interleukin 10 and MRC1). The effects of GSK3 inhibition were mimicked by Wnt3a, added exogenously, and reversed by Inhibitor of Wnt-Response-1-endo, a pharmacological disruptor of the canonical Wnt/ß-catenin pathway, and GW9662, a selective peroxisome proliferator activated receptor γ antagonist, suggesting that these two pathways are involved in the regulation of LPS-tolerance/sensitization by GSK. Finally, LiCl treatment of OHSCs enhanced the protective functional consequences of the microglial adaptive response to LPS on oligodendrocyte maturation, as indicated by MBP mRNA upregulation. These results further indicate GSK3 as key component in the orchestration of neuroinflammation and target for neuroprotective strategies.


Subject(s)
Endotoxins/metabolism , Glycogen Synthase Kinase 3/metabolism , Hippocampus/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Lithium Chloride/pharmacology , Microglia/metabolism , PPAR gamma/metabolism , Protein Kinase Inhibitors/pharmacology , Wnt3A Protein/metabolism , Animals , Glycogen Synthase Kinase 3/antagonists & inhibitors , Rats , Rats, Wistar
8.
J Neurochem ; 135(1): 147-56, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26173855

ABSTRACT

Microglial activation is a dynamic process, central to neuroinflammation, which can have beneficial or pathogenic effects to human health. Mitochondria are key players in neuroinflammatory and neurodegenerative processes, common to most brain diseases. To the best of our knowledge on the role of mitochondria in the modulation of neuroinflammation, we focused on the mitochondrial uncoupling protein-2 (UCP2), known to control mitochondrial functions and to be implicated in a variety of physiological and pathological processes. In primary microglial cultures, the M1 stimulus lipopolysaccharide induced an early and transitory decrease in UCP2 levels. The initial UCP2 down-regulation was paralleled by mitochondrial inner membrane potential (mMP) depolarization and increased mitochondrial reactive oxygen species production. The key role of UCP2 in controlling mMP and reactive oxygen species production was confirmed by both pharmacological inhibition and down-regulation by RNA interference. Additionally, UCP2-silenced microglia stimulated with lipopolysaccharide showed an enhanced inflammatory response, characterized by a greater production of nitric oxide and interleukin-6. UCP2 was differently regulated by M2 stimuli, as indicated by its persistent up-regulation by interleukin-4. In UCP2-silenced microglia, interleukin-4 failed to induce M2 genes (mannose receptor 1 and interleukin-10) and to reduce M1 genes (inducible nitric oxide synthase and tumour necrosis factor-α). Our findings indicate that UCP2 is central to the process of microglial activation, with opposite regulation of M1 and M2 responses, and point to UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes in several brain diseases where neuroinflammation is recognized to contribute to neurodegeneration. We show that the mitochondrial uncoupling protein-2 (UCP2) is central to the process of microglial activation, with opposite regulation of M1 and M2 responses. In UCP2-silenced microglia, lipopolysaccharide (LPS) triggers an enhanced inflammatory response characterized by a greater expression of M1 genes, whereas interleukin-4 (IL-4) fails in inducing M2 genes and reducing M1 genes. We propose UCP2 manipulation as a potential strategy for redirecting microglial response towards protective phenotypes.


Subject(s)
Ion Channels/metabolism , Microglia/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Animals , Interleukin-4/metabolism , Lipopolysaccharides/pharmacology , Macrophage Activation/drug effects , Microglia/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Uncoupling Protein 2 , Up-Regulation
9.
J Neurosci ; 33(39): 15388-93, 2013 Sep 25.
Article in English | MEDLINE | ID: mdl-24068806

ABSTRACT

Niemann-Pick type C1 (NPC1) disease is a rare neurovisceral disorder characterized by intracellular accumulation of unesterified cholesterol, sphingolipids, and other lipids in the lysosomal compartment. A deregulation of lysosomal calcium has been identified as one of the earliest steps of the degenerative process. Since adenosine A2A receptors (A2ARs) control lysosome trafficking and pH, which closely regulates lysosomal calcium, we hypothesized a role for these receptors in NPC1. The aim of this study was to evaluate the effects of the A2AR agonist CGS21680 on human control and NPC1 fibroblasts. We show that CGS21680 raises lysosomal calcium levels and rescues mitochondrial functionality (mitochondrial inner membrane potential and expression of the complex IV of the mitochondrial respiratory chain), which is compromised in NPC1 cells. These effects are prevented by the selective blockade of A2ARs by the antagonist ZM241385. The effects of A2AR activation on lysosomal calcium are not mediated by the cAMP/PKA pathway but they appear to involve the phosphorylation of ERK1/2. Finally, CGS21680 reduces cholesterol accumulation (Filipin III staining), which is the main criterion currently used for identification of a compound or pathway that would be beneficial for NPC disease, and such an effect is prevented by the Ca(2+) chelator BAPTA-AM. Our findings strongly support the hypothesis that A2AR agonists may represent a therapeutic option for NPC1 and provide insights on their mechanisms of action.


Subject(s)
Adenosine A2 Receptor Agonists/pharmacology , Adenosine/analogs & derivatives , Fibroblasts/drug effects , Niemann-Pick Disease, Type C/metabolism , Phenethylamines/pharmacology , Phenotype , Receptor, Adenosine A2A/metabolism , Adenosine/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Calcium/metabolism , Case-Control Studies , Cell Line , Cholesterol/metabolism , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Electron Transport Complex IV/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Lysosomes/metabolism , Male , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Niemann-Pick Disease, Type C/pathology , Triazines/pharmacology , Triazoles/pharmacology
10.
Biochim Biophys Acta ; 1832(5): 650-9, 2013 May.
Article in English | MEDLINE | ID: mdl-23402925

ABSTRACT

The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids involved in several important brain functions. Although commonly used as nutritional supplements, excessive intake of BCAAs might favour the establishment of neurotoxic conditions as indicated by the severe neurological symptoms characterising inherited disorders of BCAA catabolism such as maple syrup urine disease (MSUD). Recent evidence indicates that BCAAs induce excitotoxicity through mechanisms that require the presence of astrocytes. In the present study, we evaluated the effects of BCAAs on microglia, the main immune cells of the brain. As an experimental model we used primary microglial cells harvested from mixed glial cultures that had been kept in normal or high BCAA medium (H-BCAA). We show that H-BCAA microglial cells exhibit a peculiar phenotype characterized by a partial skewing toward the M2 state, with enhanced IL-10 expression and phagocytic activity but also increased free radical generation and decreased neuroprotective functions. We suggest that such an intermediate M1/M2 phenotype might result in a less efficient microglial response, which would promote the establishment of a low grade chronic inflammation and increase the likelihood of neurodegeneration. Although based on in vitro evidence, our study adds on to an increasing literature indicating that the increasing use of dietary integrators might deserve consideration for the possible drawbacks. In addition to excitotoxicity, the altered immune profile of microglia might represent a further mechanism by which BCAAs might turn into toxicants and facilitate neurodegeneration.


Subject(s)
Amino Acids, Branched-Chain/pharmacology , Cytokines/metabolism , Microglia/drug effects , Phagocytosis/drug effects , Animals , Animals, Newborn , Blotting, Western , Cell Movement/drug effects , Cells, Cultured , Cytokines/genetics , Free Radicals/metabolism , Gene Expression/drug effects , Immunosuppressive Agents/pharmacology , Interleukin-10/genetics , Interleukin-10/metabolism , Lipopolysaccharides/pharmacology , Membrane Potential, Mitochondrial/drug effects , Microglia/cytology , Microglia/metabolism , Rats , Reverse Transcriptase Polymerase Chain Reaction , Sirolimus/pharmacology
11.
Rev Neurosci ; 25(3): 383-400, 2014.
Article in English | MEDLINE | ID: mdl-24598832

ABSTRACT

The serotonin receptor 7 (5-HT7-R) plays important functional roles in learning and memory, in regulation of mood and circadian rhythmicity. LP-211 is a new selective agonist, belonging to 1-arylpiperazine category. We report studies aimed to evaluate the modulatory effect of a subchronic regimen on behavioral/molecular parameters. At low dose [0.25 mg/kg intraperitoneally (i.p.)], LP-211 induced a 6-h anticipated wake up in adult mice (with no temporal landmark by constant light), acting as nonphotic stimulus for 'internal clock' resetting. In standard 12:12-h light/dark cycle, a subchronic effect (5-6 days at 0.25 mg/kg, once per day) was observed: delayed wake up, reduced peak of locomotor activity and no evidence for brain cellular proliferation after ex vivo analysis. Other studies in rats were aimed to investigate long-term effects of developmental LP-211 administration into adulthood. Subchronic LP-211 (0.125 mg/kg i.p. once per day during the prepuberal phase) reduced l-glutamate, N-methyl-d-aspartate receptor 1 and dopamine transporter within the ventral striatum. With LP-211 (0.25 mg/kg i.p. once per day during the postpuberal phase), clear reductions were observed in the immunoreactivity of serotonin transporter and dopaminergic D2 receptors in the ventral and dorsal striatum, respectively. Subchronic LP-211 in rats and mice appears to be a suitable tool for studying the role of 5-HT7-R in sleep disorders, emotional/motivational regulations, attentive processes and executive functions.


Subject(s)
Behavior, Animal/physiology , Brain/metabolism , Circadian Rhythm/physiology , Receptors, Serotonin/metabolism , Animals , Behavior, Animal/drug effects , Brain/drug effects , Circadian Rhythm/drug effects , Mice , Piperazines/pharmacology , Rats , Receptors, Dopamine D2/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Receptor Agonists/pharmacology , Time Factors
12.
Glia ; 61(10): 1698-711, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23918452

ABSTRACT

Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals.


Subject(s)
Cell Polarity/physiology , Hippocampus/cytology , Microglia/physiology , Animals , Animals, Newborn , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Arginase/genetics , Arginase/metabolism , Cell Movement/drug effects , Cell Polarity/drug effects , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytokines/genetics , Cytokines/metabolism , Dinoprostone/metabolism , Enzyme-Linked Immunosorbent Assay , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Lipopolysaccharides/pharmacology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microglia/drug effects , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Organ Culture Techniques , Phagocytosis/drug effects , RNA, Messenger/metabolism , Rats , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Immunologic , Time Factors
13.
Neurobiol Dis ; 49: 148-58, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22974734

ABSTRACT

Huntington disease (HD) is a neurodegenerative disease caused by expansion of CAG repeats in the huntingtin (Htt) gene. The expression of hMTH1, the human hydrolase that degrades oxidized purine nucleoside triphosphates, grants protection in a chemical HD mouse model in which HD-like features are induced by the mitochondrial toxin 3-nitropropionic acid (3-NP). To further examine the relationship between oxidized dNTPs and HD-like neurodegeneration, we studied the effects of hMTH1 expression in a genetic cellular model for HD, such as striatal cells expressing mutant htt (Hdh(Q111)). hMTH1 expression protected these cells from 3-NP and H2O2-induced killing, by counteracting the mutant htt-dependent increased vulnerability and accumulation of nuclear and mitochondrial DNA 8-hydroxyguanine levels. hMTH1 expression reverted the decreased mitochondrial membrane potential characteristic of Hdh(Q111) cells and delayed the increase in mitochondrial reactive oxygen species associated with 3-NP treatment. Further indications of hMTH1-mediated mitochondrial protection are the partial reversion of 3-NP-induced alterations in mitochondrial morphology and the modulation of DRP1 and MFN1 proteins, which control fusion/fission rates of mitochondria. Finally, in line with the in vitro findings, upon 3-NP in vivo treatment, 8-hydroxyguanine levels in mitochondrial DNA from heart, muscle and brain are significantly lower in transgenic hMTH1-expressing mice than in wild-type animals.


Subject(s)
DNA Repair Enzymes/metabolism , Huntington Disease/physiopathology , Mitochondria/physiology , Phosphoric Monoester Hydrolases/metabolism , Animals , Brain/pathology , Brain/physiopathology , Cell Death/drug effects , Cell Death/physiology , Cell Line , Cells, Cultured , DNA, Mitochondrial/metabolism , Disease Models, Animal , Humans , Huntingtin Protein , Huntington Disease/pathology , Hydrogen Peroxide/toxicity , Membrane Potential, Mitochondrial/physiology , Mice, Transgenic , Mitochondria/pathology , Muscle, Skeletal/metabolism , Mutation , Myocardium/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nitro Compounds/toxicity , Oxidative Stress/drug effects , Oxidative Stress/physiology , Propionates/toxicity , Reactive Oxygen Species/metabolism
14.
Biol Chem ; 394(12): 1607-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23770533

ABSTRACT

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is one of the most studied nuclear receptor since its identification as a target to treat metabolic and neurological diseases. In addition to exerting anti-inflammatory and neuroprotective effects, PPAR-γ agonists, such as the insulin-sensitizing drug pioglitazone, promote the differentiation of oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS). In addition, PPAR-γ agonists increase OL mitochondrial respiratory chain activity and OL's ability to respond to environmental signals with oscillatory Ca2+ waves. Both OL maturation and oscillatory Ca2+ waves are prevented by the mitochondrial inhibitor rotenone and restored by PPAR-γ agonists, suggesting that PPAR-γ promotes myelination through mechanisms involving mitochondria.


Subject(s)
Calcium Signaling/physiology , Mitochondria/metabolism , Oligodendroglia/cytology , PPAR gamma/physiology , Animals , Cell Differentiation , Humans , Myelin Sheath/metabolism , Oligodendroglia/metabolism , PPAR gamma/agonists , Pioglitazone , Thiazolidinediones/pharmacology
15.
Mult Scler ; 19(4): 411-7, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22917691

ABSTRACT

BACKGROUND: Isoprostanes (IsoP) are sensitive biomarkers of oxidative stress. Their cerebrospinal-fluid (CSF) level is increased in several neurological conditions, including multiple sclerosis (MS). In particular, in relapsing-remitting MS, IsoP have been proposed as an index of neurodegenerative processes. The mechanisms leading to neuroaxonal damage in MS are not fully understood but oxidative mechanisms play a substantial role. Although axonal loss is present in MS patients since their first clinical symptoms, IsoP levels at this early stage have not been evaluated yet. OBJECTIVES: The objectives of this study were (a) to assess IsoP levels in CSF of patients with a first clinical attack suggestive of MS; (b) to correlate IsoP levels with magnetic resonance imaging (MRI) measures of brain damage and (c) to assess IsoP value in predicting disease clinical evolution. METHODS: Thirty-nine patients with a first clinical attack suggestive of MS underwent neurological examination, lumbar puncture with IsoP levels quantification and conventional/spectroscopic-MRI. Patients were followed up for 24 months. RESULTS: CSF IsoP levels were higher in patients than controls (mean ± standard deviation (SD) 123.4 ± 185.8 vs 4.5 ± 2.9 pg/ml; p<0.0001) and inversely correlated to normalized brain volume (p=0.04) and N-acetylaspartate/choline (NAA/Cho) (p=0.01). The risk of experiencing clinical relapses differed according to IsoP level: subjects with levels higher than 95 pg/ml (a cut-off value resulting from ROC analysis) were more likely to relapse than patients with levels equal or lower than 95 pg/ml (59% vs 27% respectively; p=0.03). CONCLUSIONS: CSF IsoP might be useful biomarkers of tissue damage in MS with a predictive value of disease course.


Subject(s)
Biomarkers/cerebrospinal fluid , Demyelinating Diseases/cerebrospinal fluid , Isoprostanes/cerebrospinal fluid , Multiple Sclerosis/cerebrospinal fluid , Adult , Area Under Curve , Demyelinating Diseases/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Multiple Sclerosis/pathology , ROC Curve , Spinal Cord/pathology
16.
J Neurosci Res ; 90(3): 575-87, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22057807

ABSTRACT

The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain.


Subject(s)
Cell Polarity/drug effects , Docosahexaenoic Acids/pharmacology , Microglia/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Animals , Cell Polarity/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Cytokines/metabolism , Dinoprostone/metabolism , Inflammation/physiopathology , Insulin-Like Growth Factor I/metabolism , Microglia/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Neurons/physiology , Nitric Oxide/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Rats
17.
Transl Psychiatry ; 12(1): 384, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36104346

ABSTRACT

Autism Spectrum Disorder (ASD) is a sex-biased neurodevelopmental disorder with a male to female prevalence of 4:1, characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests or activities. Microbiota alterations as well as signs of neuroinflammation have been also reported in ASD. The involvement of immune dysregulation in ASD is further supported by evidence suggesting that maternal immune activation (MIA), especially during early pregnancy, may be a risk factor for ASD. The present study was aimed at characterizing the effects of MIA on behavior, gut microbiota and neuroinflammation in the mouse offspring also considering the impact of MIA in the two sexes. MIA offspring exhibited significant ASD-like behavioral alterations (i.e., deficits in sociability and sensorimotor gating, perseverative behaviors). The analysis of microbiota revealed changes in specific microbial taxa that recapitulated those seen in ASD children. In addition, molecular analyses indicated sex-related differences in the neuroinflammatory responses triggered by MIA, with a more prominent effect in the cerebellum. Our data suggest that both sexes should be included in the experimental designs of preclinical studies in order to identify those mechanisms that confer different vulnerability to ASD to males and females.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Gastrointestinal Microbiome , Animals , Autism Spectrum Disorder/complications , Autistic Disorder/etiology , Behavior, Animal , Disease Models, Animal , Female , Male , Mice , Pregnancy
18.
Nutrients ; 14(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014775

ABSTRACT

Selenium (Se) is an essential trace element required for normal development as well as to counteract the adverse effects of environmental stressors. Conditions of low Se intake are present in some European countries. Our aim was to investigate the short- and long-term effects of early-life low Se supply on behavior and synaptic plasticity with a focus on the hippocampus, considering both suboptimal Se intake per se and its interaction with developmental exposure to lead (Pb). We established an animal model of Se restriction and low Pb exposure; female rats fed with an optimal (0.15 mg/kg) or suboptimal (0.04 mg/kg) Se diet were exposed from one month pre-mating until the end of lactation to 12.5 µg/mL Pb via drinking water. In rat offspring, the assessment of motor, emotional, and cognitive endpoints at different life stages were complemented by the evaluation of the expression and synaptic distribution of NMDA and AMPA receptor subunits at post-natal day (PND) 23 and 70 in the hippocampus. Suboptimal Se intake delayed the achievement of developmental milestones and induced early and long-term alterations in motor and emotional abilities. Behavioral alterations were mirrored by a drop in the expression of the majority of NMDA and AMPA receptor subunits analyzed at PND 23. The suboptimal Se status co-occurring with Pb exposure induced a transient body weight increase and persistent anxiety-like behavior. From the molecular point of view, we observed hippocampal alterations in NMDA (Glun2B and GluN1) and AMPA receptor subunit trafficking to the post-synapse in male rats only. Our study provides evidence of potential Se interactions with Pb in the developing brain.


Subject(s)
Behavior, Animal , Developmental Disabilities , Hippocampus , Lead , Receptors, Glutamate , Selenium , Animals , Behavior, Animal/physiology , Developmental Disabilities/etiology , Developmental Disabilities/metabolism , Developmental Disabilities/psychology , Disease Models, Animal , Eating , Female , Hippocampus/metabolism , Lead/metabolism , Lead/toxicity , Male , N-Methylaspartate/pharmacology , Rats , Receptors, AMPA/metabolism , Receptors, Glutamate/metabolism , Selenium/deficiency , Selenium/metabolism , Selenium/pharmacology
19.
Nutrients ; 14(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35565817

ABSTRACT

Research in both animals and humans shows that some nutrients are important in pregnancy and during the first years of life to support brain and cognitive development. Our aim was to evaluate the role of selenium (Se) in supporting brain and behavioral plasticity and maturation. Pregnant and lactating female rats and their offspring up to postnatal day 40 were fed isocaloric diets differing in Se content-i.e., optimal, sub-optimal, and deficient-and neurodevelopmental, neuroinflammatory, and anti-oxidant markers were analyzed. We observed early adverse behavioral changes in juvenile rats only in sub-optimal offspring. In addition, sub-optimal, more than deficient supply, reduced basal glial reactivity in sex dimorphic and brain-area specific fashion. In female offspring, deficient and sub-optimal diets reduced the antioxidant Glutathione peroxidase (GPx) activity in the cortex and in the liver, the latter being the key organ regulating Se metabolism and homeostasis. The finding that the Se sub-optimal was more detrimental than Se deficient diet may suggest that maternal Se deficient diet, leading to a lower Se supply at earlier stages of fetal development, stimulated homeostatic mechanisms in the offspring that were not initiated by sub-optimal Se. Our observations demonstrate that even moderate Se deficiency during early life negatively may affect, in a sex-specific manner, optimal brain development.


Subject(s)
Selenium , Animals , Antioxidants/pharmacology , Diet , Female , Glutathione Peroxidase/metabolism , Humans , Lactation , Liver/metabolism , Male , Maternal Nutritional Physiological Phenomena , Pregnancy , Rats
20.
Sci Rep ; 11(1): 4952, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33654147

ABSTRACT

Curcumin is a compound found in the rhizome of Curcuma longa (turmeric) with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. The current study aims to assess the effects of this natural compound on oligodendrocyte progenitor (OP) differentiation, particularly in inflammatory conditions. We found that curcumin can promote the differentiation of OPs and to counteract the maturation arrest of OPs induced by TNF-α by a mechanism involving PPAR-γ (peroxisome proliferator activated receptor), a ligand-activated transcription factor with neuroprotective and anti-inflammatory capabilities. Furthermore, curcumin induces the phosphorylation of the protein kinase ERK1/2 known to regulate the transition from OPs to immature oligodendrocytes (OLs), by a mechanism only partially dependent on PPAR-γ. Curcumin is also able to raise the levels of the co-factor PGC1-α and of the cytochrome c oxidase core protein COX1, even when OPs are exposed to TNF-α, through a PPAR-γ-mediated mechanism, in line with the known ability of PPAR-γ to promote mitochondrial integrity and functions, which are crucial for OL differentiation to occur. Altogether, this study provides evidence for a further mechanism of action of curcumin besides its well-known anti-inflammatory properties and supports the suggested therapeutic potential of this nutraceutical in demyelinating diseases.


Subject(s)
Cell Differentiation/drug effects , Curcumin/pharmacology , Oligodendroglia/metabolism , PPAR gamma/metabolism , Stem Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , MAP Kinase Signaling System/drug effects , Oligodendroglia/cytology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL