Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 50(8): 2386-2393, 2023 07.
Article in English | MEDLINE | ID: mdl-36877235

ABSTRACT

PURPOSE: We report findings from the first-in-human study of [11C]MDTC, a radiotracer developed to image the cannabinoid receptor type 2 (CB2R) with positron emission tomography (PET). METHODS: Ten healthy adults were imaged according to a 90-min dynamic PET protocol after bolus intravenous injection of [11C]MDTC. Five participants also completed a second [11C]MDTC PET scan to assess test-retest reproducibility of receptor-binding outcomes. The kinetic behavior of [11C]MDTC in human brain was evaluated using tissue compartmental modeling. Four additional healthy adults completed whole-body [11C]MDTC PET/CT to calculate organ doses and the whole-body effective dose. RESULTS: [11C]MDTC brain PET and [11C]MDTC whole-body PET/CT was well-tolerated. A murine study found evidence of brain-penetrant radiometabolites. The model of choice for fitting the time activity curves (TACs) across brain regions of interest was a three-tissue compartment model that includes a separate input function and compartment for the brain-penetrant metabolites. Regional distribution volume (VT) values were low, indicating low CB2R expression in the brain. Test-retest reliability of VT demonstrated a mean absolute variability of 9.91%. The measured effective dose of [11C]MDTC was 5.29 µSv/MBq. CONCLUSION: These data demonstrate the safety and pharmacokinetic behavior of [11C]MDTC with PET in healthy human brain. Future studies identifying radiometabolites of [11C]MDTC are recommended before applying [11C]MDTC PET to assess the high expression of the CB2R by activated microglia in human brain.


Subject(s)
Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Adult , Humans , Animals , Mice , Reproducibility of Results , Radiopharmaceuticals/pharmacokinetics , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Receptors, Cannabinoid/metabolism
2.
Molecules ; 28(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630410

ABSTRACT

Prostate-specific membrane antigen (PSMA)-based low-molecular-weight agents using beta(ß)-particle-emitting radiopharmaceuticals is a new treatment paradigm for patients with metastatic castration-resistant prostate cancer. Although results have been encouraging, there is a need to improve the tumor residence time of current PSMA-based radiotherapeutics. Albumin-binding moieties have been used strategically to enhance the tumor uptake and retention of existing PSMA-based investigational agents. Previously, we developed a series of PSMA-based, ß-particle-emitting, low-molecular-weight compounds. From this series, 177Lu-L1 was selected as the lead agent because of its reduced off-target radiotoxicity in preclinical studies. The ligand L1 contains a PSMA-targeting Lys-Glu urea moiety with an N-bromobenzyl substituent in the ε-amino group of Lys. Here, we structurally modified 177Lu-L1 to improve tumor targeting using two known albumin-binding moieties, 4-(p-iodophenyl) butyric acid moiety (IPBA) and ibuprofen (IBU), and evaluated the effects of linker length and composition. Six structurally related PSMA-targeting ligands (Alb-L1-Alb-L6) were synthesized based on the structure of 177Lu-L1. The ligands were assessed for in vitro binding affinity and were radiolabeled with 177Lu following standard protocols. All 177Lu-labeled analogs were studied in cell uptake and selected cell efficacy studies. In vivo pharmacokinetics were investigated by conducting tissue biodistribution studies for 177Lu-Alb-L2-177Lu-Alb-L6 (2 h, 24 h, 72 h, and 192 h) in male NSG mice bearing human PSMA+ PC3 PIP and PSMA- PC3 flu xenografts. Preliminary therapeutic ratios of the agents were estimated from the area under the curve (AUC0-192h) of the tumors, blood, and kidney uptake values. Compounds were obtained in >98% radiochemical yields and >99% purity. PSMA inhibition constants (Kis) of the ligands were in the ≤10 nM range. The long-linker-based agents, 177Lu-Alb-L4 and 177Lu-Alb-L5, displayed significantly higher tumor uptake and retention (p < 0.001) than the short-linker-bearing 177Lu-Alb-L2 and 177Lu-Alb-L3 and a long polyethylene glycol (PEG) linker-bearing agent, 177Lu-Alb-L6. The area under the curve (AUC0-192h) of the PSMA+ PC3 PIP tumor uptake of 177Lu-Alb-L4 and 177Lu-Alb-L5 were >4-fold higher than 177Lu-Alb-L2, 177Lu-Alb-L3, and 177Lu-Alb-L6, respectively. Also, the PSMA+ PIP tumor uptake (AUC0-192h) of 177Lu-Alb-L2 and 177Lu-Alb-L3 was ~1.5-fold higher than 177Lu-Alb-L6. However, the lowest blood AUC0-192h and kidney AUC0-192h were associated with 177Lu-Alb-L6 from the series. Consequently, 177Lu-Alb-L6 displayed the highest ratios of AUC(tumor)-to-AUC(blood) and AUC(tumor)-to-AUC(kidney) values from the series. Among the other agents, 177Lu-Alb-L4 demonstrated a nearly similar ratio of AUC(tumor)-to-AUC(blood) as 177Lu-Alb-L6. The tumor-to-blood ratio was the dose-limiting therapeutic ratio for all of the compounds. Conclusions: 177Lu-Alb-L4 and 177Lu-Alb-L6 showed high tumor uptake in PSMA+ tumors and tumor-to-blood ratios. The data suggest that linker length and composition can be modulated to generate an optimized therapeutic agent.


Subject(s)
Albumins , Beta Particles , Humans , Male , Animals , Mice , Ligands , Tissue Distribution , Butyric Acid
3.
Eur J Nucl Med Mol Imaging ; 49(13): 4369-4381, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35965291

ABSTRACT

PURPOSE: We developed a theranostic radiopharmaceutical that engages two key cell surface proteases, fibroblast activation protein alpha (FAP) and prostate-specific membrane antigen (PSMA), each frequently overexpressed within the tumor microenvironment (TME). The latter is also expressed in most prostate tumor epithelium. To engage a broader spectrum of cancers for imaging and therapy, we conjugated small-molecule FAP and PSMA-targeting moieties using an optimized linker to provide 64Cu-labeled compounds. METHODS: We synthesized FP-L1 and FP-L2 using two linker constructs attaching the FAP and PSMA-binding pharmacophores. We determined in vitro inhibition constants (Ki) for FAP and PSMA. Cell uptake assays and flow cytometry were conducted in human glioma (U87), melanoma (SK-MEL-24), prostate cancer (PSMA + PC3 PIP and PSMA - PC3 flu), and clear cell renal cell carcinoma lines (PSMA + /PSMA - 786-O). Quantitative positron emission tomography/computed tomography (PET/CT) and tissue biodistribution studies were performed using U87, SK-MEL-24, PSMA + PC3 PIP, and PSMA + 786-O experimental xenograft models and the KPC genetically engineered mouse model of pancreatic cancer. RESULTS: 64Cu-FP-L1 and 64Cu-FP-L2 were produced in high radiochemical yields (> 98%) and molar activities (> 19 MBq/nmol). Ki values were in the nanomolar range for both FAP and PSMA. PET imaging and biodistribution studies revealed high and specific targeting of 64Cu-FP-L1 and 64Cu-FP-L2 for FAP and PSMA. 64Cu-FP-L1 displayed more favorable pharmacokinetics than 64Cu-FP-L2. In the U87 tumor model at 2 h post-injection, tumor uptake of 64Cu-FP-L1 (10.83 ± 1.02%ID/g) was comparable to 64Cu-FAPI-04 (9.53 ± 2.55%ID/g). 64Cu-FP-L1 demonstrated high retention 5.34 ± 0.29%ID/g at 48 h in U87 tumor. Additionally, 64Cu-FP-L1 showed high retention in PSMA + PC3 PIP tumor (12.06 ± 0.78%ID/g at 2 h and 10.51 ± 1.82%ID/g at 24 h). CONCLUSIONS: 64Cu-FP-L1 demonstrated high and specific tumor targeting of FAP and PSMA. This compound should enable imaging of lesions expressing FAP, PSMA, or both on the tumor cell surface or within the TME. FP-L1 can readily be converted into a theranostic for the management of heterogeneous tumors.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Animals , Male , Mice , Humans , Radiopharmaceuticals/pharmacokinetics , Positron Emission Tomography Computed Tomography/methods , Tissue Distribution , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Positron-Emission Tomography , Prostatic Neoplasms/pathology , Tumor Microenvironment
4.
Proc Natl Acad Sci U S A ; 116(5): 1686-1691, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30635412

ABSTRACT

While neuroinflammation is an evolving concept and the cells involved and their functions are being defined, microglia are understood to be a key cellular mediator of brain injury and repair. The ability to measure microglial activity specifically and noninvasively would be a boon to the study of neuroinflammation, which is involved in a wide variety of neuropsychiatric disorders including traumatic brain injury, demyelinating disease, Alzheimer's disease (AD), and Parkinson's disease, among others. We have developed [11C]CPPC [5-cyano-N-(4-(4-[11C]methylpiperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide], a positron-emitting, high-affinity ligand that is specific for the macrophage colony-stimulating factor 1 receptor (CSF1R), the expression of which is essentially restricted to microglia within brain. [11C]CPPC demonstrates high and specific brain uptake in a murine and nonhuman primate lipopolysaccharide model of neuroinflammation. It also shows specific and elevated uptake in a murine model of AD, experimental allergic encephalomyelitis murine model of demyelination and in postmortem brain tissue of patients with AD. Radiation dosimetry in mice indicated [11C]CPPC to be safe for future human studies. [11C]CPPC can be synthesized in sufficient radiochemical yield, purity, and specific radioactivity and possesses binding specificity in relevant models that indicate potential for human PET imaging of CSF1R and the microglial component of neuroinflammation.


Subject(s)
Macrophage Colony-Stimulating Factor/metabolism , Microglia/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Plaque, Amyloid/metabolism , Positron-Emission Tomography/methods , Primates , Radiopharmaceuticals/metabolism
5.
Nat Prod Rep ; 38(4): 843-860, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33146205

ABSTRACT

Covering: 2000 to 2020 Triptolide is a bioactive diterpene triepoxide isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal plant whose extracts have been used as anti-inflammatory and immunosuppressive remedies for centuries. Although triptolide and its analogs exhibit potent bioactivities against various cancers, and inflammatory and autoimmune diseases, none of them has been approved to be used in the clinic. This review highlights advances in material sourcing, molecular mechanisms, clinical progress and new drug design strategies for triptolide over the past two decades, along with some prospects for the future course of development of triptolide.


Subject(s)
Diterpenes/pharmacology , Phenanthrenes/pharmacology , Animals , Autoimmune Diseases/drug therapy , Diterpenes/isolation & purification , Drug Design , Drug Discovery , Epoxy Compounds/isolation & purification , Epoxy Compounds/pharmacology , Forecasting , Humans , Inflammation/drug therapy , Neoplasms/drug therapy , Phenanthrenes/isolation & purification , Tripterygium/chemistry
6.
Eur J Nucl Med Mol Imaging ; 48(10): 3122-3128, 2021 09.
Article in English | MEDLINE | ID: mdl-33585963

ABSTRACT

PURPOSE: Soluble epoxide hydrolase (sEH) is an enzyme with putative effect on neuroinflammation through its influence on the homeostasis of polyunsaturated fatty acids and related byproducts. sEH is an enzyme that metabolizes anti-inflammatory epoxy fatty acids to the corresponding, relatively inert 1,2-diols. A high availability or activity of sEH promotes vasoconstriction and inflammation in local tissues that may be linked to neuropsychiatric diseases. We developed [18F]FNDP to study sEH in vivo with positron emission tomography (PET). METHODS: Brain PET using bolus injection of [18F]FNDP followed by emission imaging lasting 90 or 180 min was completed in healthy adults (5 males, 2 females, ages 40-53 years). The kinetic behavior of [18F]FNDP was evaluated using a radiometabolite-corrected arterial plasma input function with compartmental or graphical modeling approaches. RESULTS: [18F]FNDP PET was without adverse effects. Akaike information criterion favored the two-tissue compartment model (2TCM) in all ten regions of interest. Regional total distribution volume (VT) values from each compartmental model and Logan analysis were generally well identified except for corpus callosum VT using the 2TCM. Logan analysis was assessed as the choice model due to stability of regional VT values from 90-min data and due to high correlation of Logan-derived regional VT values with those from the 2TCM. [18F]FNDP binding was higher in human cerebellar cortex and thalamus relative to supratentorial cortical regions, which aligns with reported expression patterns of the epoxide hydrolase 2 gene in human brain. CONCLUSION: These data support further use of [18F]FNDP PET to study sEH in human brain.


Subject(s)
Epoxide Hydrolases , Positron-Emission Tomography , Adult , Brain/diagnostic imaging , Epoxide Hydrolases/genetics , Female , Humans , Male , Middle Aged , Neuroimaging
7.
J Labelled Comp Radiopharm ; 64(6): 243-250, 2021 05 30.
Article in English | MEDLINE | ID: mdl-33576099

ABSTRACT

[111 In]In-XYIMSR-01 is a promising single-photon emission computed tomography (SPECT) imaging agent for identification of tumors that overexpress carbonic anhydrase IX. To translate [111 In]In-XYIMSR-01 to phase I trials, we performed animal toxicity and dosimetry studies, determined the maximum dose for human use, and completed the chemistry, manufacturing, and controls component of a standard regulatory application. The production process, quality control testing, stability studies, and specifications for sterile drug product release were based on United States Pharmacopeia chapters <823> and <825>, FDA 21 CFR Part 212. Toxicity was evaluated by using nonradioactive [113/115 In]In-XYIMSR-01 according to 21 CFR Part 58 guidelines. Organ Level INternal Dose Assessment/EXponential Modeling (OLINDA/EXM) was used to calculate the maximum single dose for human studies. Three process validation runs at starting radioactivities of ~800 MBq were completed with a minimum concentration of 407 MBq/ml and radiochemical purity of ≥99% at the end of synthesis. A single intravenous dose of 55 µg/ml of [113/115 In]In-XYIMSR-01 was well tolerated in male and female Sprague-Dawley rats. The calculated maximum single dose for human injection from dosimetry studies was 390.35 MBq of [111 In]In-XYIMSR-01. We have completed toxicity and dosimetry studies as well as validated a manufacturing process to test [111 In]In-XYIMSR-01 in a phase I clinical trial.


Subject(s)
Antigens, Neoplasm , Carbonic Anhydrase IX
8.
Bioorg Med Chem Lett ; 30(3): 126894, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31874825

ABSTRACT

Prostate-specific membrane antigen (PSMA) is a zinc-bound metalloprotease which is highly expressed in metastatic prostate cancer. It has been considered an excellent target protein for prostate cancer imaging and targeted therapy because it is a membrane protein and its active site is located in the extracellular region. We successfully synthesized and evaluated a novel PSMA ligand conjugated with BODIPY650/665. Compound 1 showed strong PSMA-inhibitory activity and selective uptake into PSMA-expressing tumors. Compound 1 has the potential to be utilized as a near infrared (NIR) optical imaging probe targeting PSMA-expressing cancers.


Subject(s)
Boron Compounds/chemistry , Drug Design , Fluorescent Dyes/chemical synthesis , Glutamate Carboxypeptidase II/antagonists & inhibitors , Animals , Antigens, Surface/metabolism , Binding Sites , Cell Line, Tumor , Fluorescent Dyes/chemistry , Glutamate Carboxypeptidase II/metabolism , Humans , Ligands , Male , Mice , Molecular Dynamics Simulation , Optical Imaging , Polyethylene Glycols/chemistry , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Transplantation, Heterologous
9.
Bioorg Chem ; 104: 104304, 2020 11.
Article in English | MEDLINE | ID: mdl-33011530

ABSTRACT

Prostate-specific membrane antigen (PSMA), a type II membrane glycoprotein, is considered an excellent target for the diagnosis or treatment of prostate cancer. We previously investigated the effect of ß- and γ-amino acids with (S)- or (R)-configuration in the S1 pocket on the binding affinity for PSMA. However, comprehensive studies on the effect of α-amino acid with (R)-configuration in the S1' pocket has not been reported yet. We selected ZJ-43 (1) and DCIBzL (5) as templates and synthesized their analogues with (S)- or (R)-configuration in the P1 and P1' regions. The PSMA-inhibitory activities of compounds with altered chirality in the P1' region were dropped dramatically, with their IC50 values changing from nM to µM ranges. The compounds with (S)-configuration at both P1 and P1' regions were more potent than the others. The findings of this study may provide insights regarding the structural modification of PSMA inhibitor in the S1' binding pocket.


Subject(s)
Amino Acids/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Peptides/pharmacology , Amino Acids/chemical synthesis , Amino Acids/chemistry , Antigens, Surface/metabolism , Dose-Response Relationship, Drug , Glutamate Carboxypeptidase II/metabolism , Humans , Ligands , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Stereoisomerism , Structure-Activity Relationship
10.
Lancet Oncol ; 20(8): e443-e451, 2019 08.
Article in English | MEDLINE | ID: mdl-31364596

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapy is one of the most remarkable advances in cancer therapy in the last several decades. More than 300 adoptive T-cell therapy trials are ongoing, which is a testament to the early success and hope engendered by this line of investigation. Despite the enthusiasm, application of CAR T-cell therapy to solid tumours has had little success, although positive outcomes are increasingly being reported for these diseases. In this Series paper, we discuss the short-term strategies to improve CAR T-cell therapy responses, particularly for solid tumours, by combining CAR T-cell therapy with radiotherapy through the use of careful monitoring and non-invasive imaging. Through the use of imaging, we can gain greater mechanistic insights into the cascade of events that must unfold to enable tumour eradication by CAR T-cell therapy.


Subject(s)
Immunotherapy, Adoptive/methods , Neoplasms/therapy , Radiotherapy/methods , Animals , Combined Modality Therapy/methods , Diagnostic Imaging/methods , Humans , Receptors, Chimeric Antigen
11.
Eur J Nucl Med Mol Imaging ; 46(12): 2545-2557, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31399803

ABSTRACT

PURPOSE: To develop a prostate-specific membrane antigen (PSMA)-targeted radiotherapeutic for metastatic castration-resistant prostate cancer (mCRPC) with optimized efficacy and minimized toxicity employing the ß-particle radiation of 177Lu. METHODS: We synthesized 14 new PSMA-targeted, 177Lu-labeled radioligands (177Lu-L1-177Lu-L14) using different chelating agents and linkers. We evaluated them in vitro using human prostate cancer PSMA(+) PC3 PIP and PSMA(-) PC3 flu cells and in corresponding flank tumor models. Efficacy and toxicity after 8 weeks were evaluated at a single administration of 111 MBq for 177Lu-L1, 177Lu-L3, 177Lu-L5 and 177Lu-PSMA-617. Efficacy of 177Lu-L1 was further investigated using different doses, and long-term toxicity was determined in healthy immunocompetent mice. RESULTS: Radioligands were produced in high radiochemical yield and purity. Cell uptake and internalization indicated specific uptake only in PSMA(+) PC3 cells. 177Lu-L1, 177Lu-L3 and 177Lu-L5 demonstrated comparable uptake to 177Lu-PSMA-617 and 177Lu-PSMA-I&T in PSMA-expressing tumors up to 72 h post-injection. 177Lu-L1, 177Lu-L3 and 177Lu-L5 also demonstrated efficient tumor regression at 8 weeks. 177Lu-L1 enabled the highest survival rate. Necropsy studies of the treated group at 8 weeks revealed subacute damage to lacrimal glands and testes. No radiation nephropathy was observed 1 year post-treatment in healthy mice receiving 111 MBq of 177Lu-L1, most likely related to the fast renal clearance of this agent. CONCLUSIONS: 177Lu-L1 is a viable clinical candidate for radionuclide therapy of PSMA-expressing malignancies because of its high tumor-targeting ability and low off-target radiotoxic effects.


Subject(s)
Glutamate Carboxypeptidase II/metabolism , Lutetium/chemistry , Radioisotopes/chemistry , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/therapeutic use , Animals , Isotope Labeling , Male , Mice , Molecular Weight , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radiometry , Radiopharmaceuticals/metabolism
12.
Bioorg Chem ; 89: 102990, 2019 08.
Article in English | MEDLINE | ID: mdl-31136899

ABSTRACT

Hepsin is a type II serine protease that is highly expressed in neoplastic prostate. It is an attractive biomarker for imaging metastatic prostate cancer because of its overexpression in advanced prostate cancer and the location of its active site on the cell surface. We designed and synthesized novel hepsin-targeted imaging probes by conjugating the hepsin-binding ligand with near-infrared (NIR) optical dyes. The Leu-Arg dipeptides, attached to BODIPY or SulfoCy7, exhibited strong hepsin-inhibitory activities with Ki values of 21 and 22 nM, respectively. Compound 2 showed selective uptake and retention in hepsin-overexpressing cells. This is the first report of hepsin-targeted optical probes with strong binding affinities and high selectivity over matriptase. Compound 2 has the potential to be used for developing hepsin-based imaging probes and be as a prototype molecule in the design of new hepsin inhibitors.


Subject(s)
Drug Design , Fluorescent Dyes/chemistry , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Binding Sites , Boron Compounds/chemistry , Catalytic Domain , Cell Line, Tumor , Humans , Inhibitory Concentration 50 , Ligands , Molecular Docking Simulation , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/metabolism
13.
Neuroimage ; 165: 118-124, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28993233

ABSTRACT

Altered function of the alpha7 nicotinic acetylcholine receptor (α7-nAChR) is implicated in several neuropsychiatric diseases. Nevertheless, studies of the human cerebral α7-nAChR even in healthy aging are limited in number and to postmortem tissue. METHODS: The distribution of the cerebral α7-nAChR was estimated in nine brain regions in 25 healthy volunteers (ages 21-86 years; median 57 years, interquartile range 52 years) using [18F]ASEM with positron emission tomography (PET) imaging. Regional total distribution volume (VT) measurements were calculated using the Logan method from each subject's 90 min dynamic PET data and their metabolite-corrected plasma input function. Spearman's rank or Pearson's correlation analysis was used depending on the normality of the data. Correlation between age and regional 1) volume relative to intracranial volume (volume ratio) and 2) [18F]ASEM VT was tested. Correlation between regional volume ratio and [18F]ASEM VT was also evaluated. Finally, the relationship between [18F]ASEM VT and neuropsychological measures was investigated in a subpopulation of 15 elderly healthy participants (those 50 years of age and older). Bonferroni correction for multiple comparisons was applied to statistical analyses. RESULTS: A negative correlation between tissue volume ratio and age was observed in six of the nine brain regions including striatum and five cortical (temporal, occipital, cingulate, frontal, or parietal) regions. A positive correlation between [18F]ASEM VT and age was observed in all nine brain regions of interest (ROIs). There was no correlation between [18F]ASEM VT and volume ratio in any ROI after controlling for age. Regional [18F]ASEM VT and neuropsychological performance on each of eight representative subtests were not correlated among the well-performing subpopulation of elderly healthy participants. CONCLUSIONS: Our results suggest an increase in cerebral α7-nAChR distribution over the course of healthy aging that should be tested in future longitudinal studies. The preservation of the α7-nAChR in the aging human brain supports the development of therapeutic agents that target this receptor for use in the elderly. Further study of the relationship between α7-nAChR availability and cognitive impairment over aging is needed.


Subject(s)
Brain/metabolism , Healthy Aging/metabolism , alpha7 Nicotinic Acetylcholine Receptor/analysis , Adult , Aged , Aged, 80 and over , Azabicyclo Compounds , Cyclic S-Oxides , Female , Humans , Male , Middle Aged , Positron-Emission Tomography/methods , Young Adult
14.
Chemistry ; 24(28): 7235-7242, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29508450

ABSTRACT

Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is an innovative molecular imaging technique in which contrast agents are labeled by saturating their exchangeable proton spins by radio-frequency irradiation. Salicylic acid and its analogues are a promising class of highly sensitive, diamagnetic CEST agents. Herein, polymeric agents grafted with salicylic acid moieties and a known high-affinity ligand targeting prostate-specific membrane antigen in approximately 10:1 molar ratio were synthesized to provide sufficient MRI sensitivity and receptor specificity. The proton-exchange properties of the contrast agent in solution and in an experimental murine model are reported to demonstrate the feasibility of receptor-targeted CEST MRI of prostate cancer. Furthermore, the CEST imaging data were validated with an 111 In-labeled analogue of the agent by in vivo single photon emission computed tomographic imaging and tissue biodistribution studies.


Subject(s)
Contrast Media/chemistry , Polymers/chemistry , Prostatic Neoplasms/diagnostic imaging , Salicylic Acid/chemistry , Animals , Humans , Magnetic Resonance Imaging , Male , Protons , Tissue Distribution
16.
Angew Chem Int Ed Engl ; 55(39): 12035-9, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27574181

ABSTRACT

Triptolide, a key ingredient from the traditional Chinese medicinal plant thunder god vine, which has been used to treat inflammation and autoimmune diseases for centuries, has been shown to be an irreversible inhibitor of the XPB subunit of the transcription factor TFIIH and initiation of RNA polymerase II mediated transcription. The clinical development of triptolide over the past two decades has been limited by its toxicity and low water solubility. Herein, we report the development of a glucose conjugate of triptolide, named glutriptolide, which was intended to target tumor cells overexpressing glucose transporters selectively. Glutriptolide did not inhibit XPB activity in vitro but demonstrated significantly higher cytotoxicity against tumor cells over normal cells with greater water solubility than triptolide. Furthermore, it exhibited remarkable tumor control in vivo, which is likely due to sustained stepwise release of active triptolide within cancer cells. These findings indicate that glutriptolide may serve as a promising lead for developing a new mechanistic class of anticancer drugs.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Diterpenes/administration & dosage , Diterpenes/therapeutic use , Drug Delivery Systems , Glucose/chemistry , Neoplasms/drug therapy , Phenanthrenes/administration & dosage , Phenanthrenes/therapeutic use , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Diterpenes/chemistry , Epoxy Compounds/administration & dosage , Epoxy Compounds/chemistry , Epoxy Compounds/therapeutic use , HEK293 Cells , Humans , Mice , Phenanthrenes/chemistry
17.
Magn Reson Med ; 74(2): 544-9, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25919119

ABSTRACT

PURPOSE: To develop an imaging tool that enables the detection of malignant tissue with enhanced specificity using the exquisite spatial resolution of MRI. METHODS: Two mammalian gene expression vectors were created for the expression of the lysine-rich protein (LRP) under the control of the cytomegalovirus (CMV) promoter and the progression elevated gene-3 promoter (PEG-3 promoter) for constitutive and tumor-specific expression of LRP, respectively. Using those vectors, stable cell lines of rat 9L glioma, 9L(CMV-LRP) and 9L(PEG-LRP) , were established and tested for CEST contrast in vitro and in vivo. RESULTS: 9L(PEG-LRP) cells showed increased CEST contrast compared with 9L cells in vitro. Both 9L(CMV-LRP) and 9L(PEG-LRP) cells were capable of generating tumors in the brains of mice, with a similar growth rate to tumors derived from wild-type 9L cells. An increase in CEST contrast was clearly visible in tumors derived from both 9L(CMV-LRP) and 9L(PEG-LRP) cells at 3.4 ppm. CONCLUSION: The PEG-3 promoter:LRP system can be used as a cancer-specific, molecular-genetic imaging reporter system in vivo. Because of the ubiquity of MR imaging in clinical practice, sensors of this class can be used to translate molecular-genetic imaging rapidly.


Subject(s)
Biomarkers, Tumor/genetics , Genes, Reporter/genetics , Magnetic Resonance Imaging/methods , Molecular Imaging/methods , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Animals , Female , Humans , Image Enhancement/methods , Male , Mice , Promoter Regions, Genetic/genetics , Rats , Reproducibility of Results , Sensitivity and Specificity
18.
Bioconjug Chem ; 25(2): 393-405, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24410012

ABSTRACT

Differential expression of surface proteins on normal vs malignant cells provides the rationale for the development of receptor-, antigen-, and transporter-based, cancer-selective imaging and therapeutic agents. However, tumors are heterogeneous, and do not always express what can be considered reliable, tumor-selective markers. That suggests development of more flexible targeting platforms that incorporate multiple moieties enabling concurrent targeting to a variety of putative markers. We report the synthesis, biochemical, in vitro, and preliminary in vivo evaluation of a new heterobivalent (HtBv) imaging agent targeting both the prostate-specific membrane antigen (PSMA) and integrin-αvß3 surface markers, each of which can be overexpressed in certain tumor epithelium and/or neovasculature. The HtBv agent was functionalized with either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or the commercially available IRDye800CW. DOTA-conjugated HtBv probe 9 bound to PSMA or αvß3 with affinities similar to those of monovalent (Mnv) compounds designed to bind to their targets independently. In situ energy minimization experiments support a model describing the conformations adapted by 9 that enable it to bind both targets. IRDye800-conjugated HtBv probe 10 demonstrated target-specific binding to either PSMA or integrin-αvß3 overexpressing xenografts. HtBv agents 9 and 10 may enable dual-targeted imaging of malignant cells and tissues in an effort to address heterogeneity that confounds many cancer-targeted imaging agents.


Subject(s)
Antigens, Surface/chemistry , Glutamate Carboxypeptidase II/chemistry , Integrin alphaVbeta3/chemistry
19.
Chemistry ; 20(48): 15824-32, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25302635

ABSTRACT

The optimal exchange properties for chemical exchange saturation transfer (CEST) contrast agents on 3 T clinical scanners were characterized using continuous wave saturation transfer, and it was demonstrated that the exchangeable protons in phenols can be tuned to reach these criteria through proper ring substitution. Systematic modification allows the chemical shift of the exchangeable protons to be positioned between 4.8 to 12 ppm from water and enables adjustment of the proton exchange rate to maximize CEST contrast at these shifts. In particular, 44 hydrogen-bonded phenols are investigated for their potential as CEST MRI contrast agents and the stereoelectronic effects on their CEST properties are summarized. Furthermore, a pair of compounds, 2,5-dihydroxyterephthalic acid and 4,6-dihydroxyisophthalic acid, were identified which produce the highest sensitivity through incorporating two exchangeable protons per ring.


Subject(s)
Hydrogen/chemistry , Phenols/chemistry , Phthalic Acids/chemistry , Contrast Media/chemistry , Hydrogen Bonding , Magnetic Resonance Imaging
20.
Biol Methods Protoc ; 9(1): bpae041, 2024.
Article in English | MEDLINE | ID: mdl-38938409

ABSTRACT

Real-time polymerase chain reaction (real-time PCR) is a powerful tool for the precise quantification of nucleic acids in various applications. In cancer management, the monitoring of circulating tumor DNA (ctDNA) from liquid biopsies can provide valuable information for precision care, including treatment selection and monitoring, prognosis, and early detection. However, the rare and heterogeneous nature of ctDNA has made its precise detection and quantification challenging, particularly for ctDNA containing hotspot mutations. We have developed a new real-time PCR tool, PROMER technology, which enables the precise and sensitive detection of ctDNA containing cancer-driven single-point mutations. The PROMER functions as both a PRObe and priMER, providing enhanced detection specificity. We validated PROMER technology using synthetic templates with known KRAS point mutations and demonstrated its sensitivity and linearity of quantification. Using genomic DNA from human cancer cells with mutant and wild-type KRAS, we confirmed that PROMER PCR can detect mutant DNA. Furthermore, we demonstrated the ability of PROMER technology to efficiently detect mutation-carrying ctDNA from the plasma of mice with human cancers. Our results suggest that PROMER technology represents a promising new tool for the precise detection and quantification of DNA containing point mutations in the presence of a large excess of wild-type counterpart.

SELECTION OF CITATIONS
SEARCH DETAIL