Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Nature ; 605(7909): 349-356, 2022 05.
Article in English | MEDLINE | ID: mdl-35477763

ABSTRACT

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Subject(s)
Gain of Function Mutation , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Animals , Autoimmunity/genetics , B-Lymphocytes , Cyclic GMP/analogs & derivatives , Guanosine , Humans , Lupus Erythematosus, Systemic/genetics , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
2.
EMBO J ; 42(6): e112558, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36762431

ABSTRACT

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Subject(s)
Caspases , Inflammasomes , Mice , Humans , Animals , Caspases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Moraxella catarrhalis/metabolism , Carrier Proteins , Immunity, Innate
3.
Nature ; 591(7848): 131-136, 2021 03.
Article in English | MEDLINE | ID: mdl-33472215

ABSTRACT

Plasma membrane rupture (PMR) is the final cataclysmic event in lytic cell death. PMR releases intracellular molecules known as damage-associated molecular patterns (DAMPs) that propagate the inflammatory response1-3. The underlying mechanism of PMR, however, is unknown. Here we show that the cell-surface NINJ1 protein4-8, which contains two transmembrane regions, has an essential role in the induction of PMR. A forward-genetic screen of randomly mutagenized mice linked NINJ1 to PMR. Ninj1-/- macrophages exhibited impaired PMR in response to diverse inducers of pyroptotic, necrotic and apoptotic cell death, and were unable to release numerous intracellular proteins including HMGB1 (a known DAMP) and LDH (a standard measure of PMR). Ninj1-/- macrophages died, but with a distinctive and persistent ballooned morphology, attributable to defective disintegration of bubble-like herniations. Ninj1-/- mice were more susceptible than wild-type mice to infection with Citrobacter rodentium, which suggests a role for PMR in anti-bacterial host defence. Mechanistically, NINJ1 used an evolutionarily conserved extracellular domain for oligomerization and subsequent PMR. The discovery of NINJ1 as a mediator of PMR overturns the long-held idea that cell death-related PMR is a passive event.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Cell Death , Cell Membrane/metabolism , Nerve Growth Factors/metabolism , Animals , Apoptosis , Cell Adhesion Molecules, Neuronal/chemistry , Cell Adhesion Molecules, Neuronal/genetics , Cell Death/genetics , Female , Humans , Macrophages , Male , Mice , Mutation , Necrosis , Nerve Growth Factors/chemistry , Nerve Growth Factors/genetics , Protein Multimerization , Pyroptosis/genetics
4.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37073791

ABSTRACT

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Clostridium perfringens/metabolism , Virulence Factors , Inflammation , Interleukin-1beta/metabolism , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
5.
J Infect Dis ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38366567

ABSTRACT

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, analysis of these in patients is complicated by their treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. We also uncovered a critical, cell intrinsic role of DOCK2 in the priming of anti-viral CD8+ T cells and in particular their initial expansion, despite apparently normal early activation of these cells. When this defect was overcome by priming in vitro, DOCK2-deficient CD8+ T cells were surprisingly protective against HSV-1-disease, albeit not as effectively as wild type cells. These results shed light on a cellular deficiency that is likely to impact anti-viral immunity in DOCK2-deficient patients.

6.
J Immunol ; 206(7): 1505-1514, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33658297

ABSTRACT

IKZF1 (IKAROS) is essential for normal lymphopoiesis in both humans and mice. Previous Ikzf1 mouse models have demonstrated the dual role for IKZF1 in both B and T cell development and have indicated differential requirements of each zinc finger. Furthermore, mutations in IKZF1 are known to cause common variable immunodeficiency in patients characterized by a loss of B cells and reduced Ab production. Through N-ethyl-N-nitrosourea mutagenesis, we have discovered a novel Ikzf1 mutant mouse with a missense mutation (L132P) in zinc finger 1 (ZF1) located in the DNA binding domain. Unlike other previously reported murine Ikzf1 mutations, this L132P point mutation (Ikzf1L132P ) conserves overall protein expression and has a B cell-specific phenotype with no effect on T cell development, indicating that ZF1 is not required for T cells. Mice have reduced Ab responses to immunization and show a progressive loss of serum Igs compared with wild-type littermates. IKZF1L132P overexpressed in NIH3T3 or HEK293T cells failed to localize to pericentromeric heterochromatin and bind target DNA sequences. Coexpression of wild-type and mutant IKZF1, however, allows for localization to pericentromeric heterochromatin and binding to DNA indicating a haploinsufficient mechanism of action for IKZF1L132P Furthermore, Ikzf1+/L132P mice have late onset defective Ig production, similar to what is observed in common variable immunodeficiency patients. RNA sequencing revealed a total loss of Hsf1 expression in follicular B cells, suggesting a possible functional link for the humoral immune response defects observed in Ikzf1L132P/L132P mice.


Subject(s)
B-Lymphocytes/immunology , Common Variable Immunodeficiency/genetics , Ikaros Transcription Factor/genetics , Point Mutation/genetics , Animals , Antibody Formation , HEK293 Cells , Haploinsufficiency , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Humans , Ikaros Transcription Factor/metabolism , Immunoglobulins/metabolism , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , NIH 3T3 Cells
7.
Immunol Cell Biol ; 100(8): 636-652, 2022 09.
Article in English | MEDLINE | ID: mdl-35713361

ABSTRACT

Special AT-binding protein 1 (SATB1) is a chromatin-binding protein that has been shown to be a key regulator of T-cell development and CD4+ T-cell fate decisions and function. The underlying function for SATB1 in peripheral CD8+ T-cell differentiation processes is largely unknown. To address this, we examined SATB1-binding patterns in naïve and effector CD8+ T cells demonstrating that SATB1 binds to noncoding regulatory elements linked to T-cell lineage-specific gene programs, particularly in naïve CD8+ T cells. We then assessed SATB1 function using N-ethyl-N-nitrosourea-mutant mice that exhibit a point mutation in the SATB1 DNA-binding domain (termed Satb1m1Anu/m1Anu ). Satb1m1Anu/m1Anu mice exhibit diminished SATB1-binding, naïve, Satb1m1Anu/m1Anu CD8+ T cells exhibiting transcriptional and phenotypic characteristics reminiscent of effector T cells. Upon activation, the transcriptional signatures of Satb1m1Anu/m1Anu and wild-type effector CD8+ T cells converged. While there were no overt differences, primary respiratory infection of Satb1m1Anu/m1Anu mice with influenza A virus (IAV) resulted in a decreased proportion and number of IAV-specific CD8+ effector T cells recruited to the infected lung when compared with wild-type mice. Together, these data suggest that SATB1 has a major role in an appropriate transcriptional state within naïve CD8+ T cells and ensures appropriate CD8+ T-cell effector gene expression upon activation.


Subject(s)
Influenza A virus , Matrix Attachment Region Binding Proteins , Animals , CD8-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Activation , Matrix Attachment Region Binding Proteins/metabolism , Mice
8.
Proc Natl Acad Sci U S A ; 114(26): E5216-E5225, 2017 06 27.
Article in English | MEDLINE | ID: mdl-28607084

ABSTRACT

T-cell immunity requires extremely rapid clonal proliferation of rare, antigen-specific T lymphocytes to form effector cells. Here we identify a critical role for ETAA1 in this process by surveying random germ line mutations in mice using exome sequencing and bioinformatic annotation to prioritize mutations in genes of unknown function with potential effects on the immune system, followed by breeding to homozygosity and testing for immune system phenotypes. Effector CD8+ and CD4+ T-cell formation following immunization, lymphocytic choriomeningitis virus (LCMV) infection, or herpes simplex virus 1 (HSV1) infection was profoundly decreased despite normal immune cell development in adult mice homozygous for two different Etaa1 mutations: an exon 2 skipping allele that deletes Gly78-Leu119, and a Cys166Stop truncating allele that eliminates most of the 877-aa protein. ETAA1 deficiency decreased clonal expansion cell autonomously within the responding T cells, causing no decrease in their division rate but increasing TP53-induced mRNAs and phosphorylation of H2AX, a marker of DNA replication stress induced by the ATM and ATR kinases. Homozygous ETAA1-deficient adult mice were otherwise normal, healthy, and fertile, although slightly smaller, and homozygotes were born at lower frequency than expected, consistent with partial lethality after embryonic day 12. Taken together with recently reported evidence in human cancer cell lines that ETAA1 activates ATR kinase through an exon 2-encoded domain, these findings reveal a surprisingly specific requirement for this ATR activator in adult mice restricted to rapidly dividing effector T cells. This specific requirement may provide new ways to suppress pathological T-cell responses in transplantation or autoimmunity.


Subject(s)
Antigens, Surface/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Division/immunology , Immunity, Cellular , Mutation , Animals , Antigens, Surface/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/pathology , Cell Division/genetics , Herpes Simplex/genetics , Herpes Simplex/immunology , Herpes Simplex/pathology , Herpesvirus 1, Human/genetics , Herpesvirus 1, Human/immunology , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/pathology , Lymphocytic choriomeningitis virus/genetics , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Mutant Strains , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology
9.
Proc Natl Acad Sci U S A ; 112(37): E5189-98, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26269570

ABSTRACT

Each person's genome sequence has thousands of missense variants. Practical interpretation of their functional significance must rely on computational inferences in the absence of exhaustive experimental measurements. Here we analyzed the efficacy of these inferences in 33 de novo missense mutations revealed by sequencing in first-generation progeny of N-ethyl-N-nitrosourea-treated mice, involving 23 essential immune system genes. PolyPhen2, SIFT, MutationAssessor, Panther, CADD, and Condel were used to predict each mutation's functional importance, whereas the actual effect was measured by breeding and testing homozygotes for the expected in vivo loss-of-function phenotype. Only 20% of mutations predicted to be deleterious by PolyPhen2 (and 15% by CADD) showed a discernible phenotype in individual homozygotes. Half of all possible missense mutations in the same 23 immune genes were predicted to be deleterious, and most of these appear to become subject to purifying selection because few persist between separate mouse substrains, rodents, or primates. Because defects in immune genes could be phenotypically masked in vivo by compensation and environment, we compared inferences by the same tools with the in vitro phenotype of all 2,314 possible missense variants in TP53; 42% of mutations predicted by PolyPhen2 to be deleterious (and 45% by CADD) had little measurable consequence for TP53-promoted transcription. We conclude that for de novo or low-frequency missense mutations found by genome sequencing, half those inferred as deleterious correspond to nearly neutral mutations that have little impact on the clinical phenotype of individual cases but will nevertheless become subject to purifying selection.


Subject(s)
Mutation, Missense , Animals , Codon , Computational Biology , Computer Simulation , Exome , Genetic Variation , Genome , Genome, Human , Genotype , Humans , Immune System , Immunologic Deficiency Syndromes/genetics , Mice , Mice, Inbred C57BL , Models, Genetic , Neoplasms/genetics , Phenotype , Software , Tumor Suppressor Protein p53/genetics
10.
Am J Pathol ; 186(9): 2254-61, 2016 09.
Article in English | MEDLINE | ID: mdl-27427419

ABSTRACT

Chronic intestinal pseudo-obstruction (CIPO) is a rare but life-threatening disease characterized by severe intestinal dysmotility. Histopathologic studies in CIPO patients have identified several different mechanisms that appear to be involved in the dysmotility, including defects in neurons, smooth muscle, or interstitial cells of Cajal. Currently there are few mouse models of the various forms of CIPO. We generated a mouse with a point mutation in the RNA recognition motif of the Nup35 gene, which encodes a component of the nuclear pore complex. Nup35 mutants developed a severe megacolon and exhibited a reduced lifespan. Histopathologic examination revealed a degenerative myopathy that developed after birth and specifically affected smooth muscle in the colon; smooth muscle in the small bowel and the bladder were not affected. Furthermore, no defects were found in enteric neurons or interstitial cells of Cajal. Nup35 mice are likely to be a valuable model for the subtype of CIPO characterized by degenerative myopathy. Our study also raises the possibility that Nup35 polymorphisms could contribute to some cases of CIPO.


Subject(s)
Colonic Pseudo-Obstruction/genetics , Disease Models, Animal , Muscular Diseases/genetics , Nuclear Pore Complex Proteins/genetics , Point Mutation , Animals , Chronic Disease , Colonic Pseudo-Obstruction/pathology , Immunohistochemistry , Mice , Mice, Mutant Strains , Muscle, Smooth/pathology , Muscular Diseases/pathology
11.
J Immunol ; 194(6): 2587-95, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25662996

ABSTRACT

Gene variants that disrupt TCR signaling can cause severe immune deficiency, yet less disruptive variants are sometimes associated with immune pathology. Null mutations of the gene encoding the scaffold protein Src homology 2 domain-containing leukocyte protein of 76 kDa (SLP-76), for example, cause an arrest of T cell positive selection, whereas a synthetic membrane-targeted allele allows limited positive selection but is associated with proinflammatory cytokine production and autoantibodies. Whether these and other enigmatic outcomes are due to a biochemical uncoupling of tolerogenic signaling, or simply a quantitative reduction of protein activity, remains to be determined. In this study we describe a splice variant of Lcp2 that reduced the amount of wild-type SLP-76 protein by ~90%, disrupting immunogenic and tolerogenic pathways to different degrees. Mutant mice produced excessive amounts of proinflammatory cytokines, autoantibodies, and IgE, revealing that simple quantitative reductions of SLP-76 were sufficient to trigger immune dysregulation. This allele reveals a dose-sensitive threshold for SLP-76 in the balance of immunity and immune dysregulation, a common disturbance of atypical clinical immune deficiencies.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Immunity/immunology , Phosphoproteins/immunology , Signal Transduction/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antibodies, Antinuclear/immunology , Antibodies, Antinuclear/metabolism , Blotting, Western , Cytokines/immunology , Cytokines/metabolism , Female , Flow Cytometry , Immunity/genetics , Immunoglobulin E/immunology , Immunoglobulin E/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mice, Transgenic , Mutation/immunology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymus Gland/immunology , Thymus Gland/metabolism
12.
Proc Natl Acad Sci U S A ; 111(12): 4513-8, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24616512

ABSTRACT

IgD and IgM are produced by alternative splicing of long primary RNA transcripts from the Ig heavy chain (Igh) locus and serve as the receptors for antigen on naïve mature B lymphocytes. IgM is made selectively in immature B cells, whereas IgD is coexpressed with IgM when the cells mature into follicular or marginal zone B cells, but the transacting factors responsible for this regulated change in splicing have remained elusive. Here, we use a genetic screen in mice to identify ZFP318, a nuclear protein with two U1-type zinc fingers found in RNA-binding proteins and no known role in the immune system, as a critical factor for IgD expression. A point mutation in an evolutionarily conserved lysine-rich domain encoded by the alternatively spliced Zfp318 exon 10 abolished IgD expression on marginal zone B cells, decreased IgD on follicular B cells, and increased IgM, but only slightly decreased the percentage of B cells and did not decrease expression of other maturation markers CD21, CD23, or CD62L. A targeted Zfp318 null allele extinguished IgD expression on mature B cells and increased IgM. Zfp318 mRNA is developmentally regulated in parallel with IgD, with little in pro-B cells, moderate amounts in immature B cells, and high levels selectively in mature follicular B cells. These findings identify ZFP318 as a crucial factor regulating the expression of the two major antibody isotypes on the surface of most mature B cells.


Subject(s)
Alternative Splicing , B-Lymphocytes/metabolism , Immunoglobulin D/genetics , Immunoglobulin Heavy Chains/genetics , Zinc Fingers , Amino Acid Sequence , Animals , Humans , Mice , Molecular Sequence Data , Mutation, Missense , Sequence Homology, Amino Acid
13.
PLoS Genet ; 9(1): e1003219, 2013.
Article in English | MEDLINE | ID: mdl-23382690

ABSTRACT

Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.


Subject(s)
Disease Models, Animal , Ethylnitrosourea/toxicity , Genome , Mutation/genetics , Sequence Analysis, DNA/methods , Animals , Chromosome Mapping , Genes, Dominant , Genes, Recessive , Humans , Mice , Mutagenesis , Phenotype
14.
Immunol Cell Biol ; 93(6): 517-21, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25776845

ABSTRACT

DOCK8 deficiency in humans and mice leads to multiple defects in immune cell numbers and function. Patients with this immunodeficiency have a high morbidity and mortality, and are distinguished by chronic cutaneous viral infections, including those caused by herpes simplex virus (HSV). The underlying mechanism of the specific susceptibility to these chronic cutaneous viral infections is currently unknown, largely because the effect of DOCK8 deficiency has not been studied in suitable models. A better understanding of these mechanisms is required to underpin the development of more specific therapies. Here we show that DOCK8-deficient mice have poor control of primary cutaneous herpes simplex lesions and this is associated with increased virus loads. Furthermore, DOCK8-deficient mice showed a lack of CD4(+) T-cell infiltration into HSV-infected skin.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Chemotaxis, Leukocyte , Guanine Nucleotide Exchange Factors/deficiency , Herpes Simplex/genetics , Herpes Simplex/immunology , Simplexvirus/immunology , Skin/immunology , Skin/pathology , Animals , Cell Line , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Disease Models, Animal , Herpes Simplex/pathology , Herpes Simplex/virology , Immunity , Mice , Mice, Knockout , Skin/virology , Viral Load
15.
J Allergy Clin Immunol ; 131(2): 477-85.e1, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23374270

ABSTRACT

BACKGROUND: Profound combined immunodeficiency can present with normal numbers of T and B cells, and therefore the functional defect of the cellular and humoral immune response is often not recognized until the first severe clinical manifestation. Here we report a patient of consanguineous descent presenting at 13 months of age with hypogammaglobulinemia, Pneumocystis jirovecii pneumonia, and a suggestive family history. OBJECTIVE: We sought to identify the genetic alteration in a patient with combined immunodeficiency and characterize human caspase recruitment domain family, member 11 (CARD11), deficiency. METHODS: Molecular, immunologic, and functional assays were performed. RESULTS: The immunologic characterization revealed only subtle changes in the T-cell and natural killer cell compartment, whereas B-cell differentiation, although normal in number, was distinctively blocked at the transitional stage. Genetic evaluation revealed a homozygous deletion of exon 21 in CARD11 as the underlying defect. This deletion abrogated protein expression and activation of the canonical nuclear factor κB (NF-κB) pathway in lymphocytes after antigen receptor or phorbol 12-myristate 13-acetate stimulation, whereas CD40 signaling in B cells was preserved. The abrogated activation of the canonical NF-κB pathway was associated with severely impaired upregulation of inducible T-cell costimulator, OX40, cytokine production, proliferation of T cells, and B cell-activating factor receptor expression on B cells. CONCLUSION: Thus in patients with CARD11 deficiency, the combination of impaired activation and especially upregulation of inducible T-cell costimulator on T cells, together with severely disturbed peripheral B-cell differentiation, apparently leads to a defective T-cell/B-cell cooperation and probably germinal center formation and clinically results in severe immunodeficiency. This report discloses the crucial and nonredundant role of canonical NF-κB activation and specifically CARD11 in the antigen-specific immune response in human subjects.


Subject(s)
CARD Signaling Adaptor Proteins/deficiency , Guanylate Cyclase/deficiency , Immunologic Deficiency Syndromes/enzymology , Sequence Deletion , Agammaglobulinemia/enzymology , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/immunology , Female , Guanylate Cyclase/genetics , Guanylate Cyclase/immunology , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Infant
16.
bioRxiv ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37577614

ABSTRACT

The expanding number of rare immunodeficiency syndromes offers an opportunity to understand key genes that support immune defence against infectious diseases. However, patients with these diseases are by definition rare. In addition, any analysis is complicated by treatments and co-morbid infections requiring the use of mouse models for detailed investigations. Here we develop a mouse model of DOCK2 immunodeficiency and demonstrate that these mice have delayed clearance of herpes simplex virus type 1 (HSV-1) infections. Further, we found that they have a critical, cell intrinsic role of DOCK2 in the clonal expansion of anti-viral CD8+ T cells despite normal early activation of these cells. Finally, while the major deficiency is in clonal expansion, the ability of primed and expanded DOCK2-deficient CD8+ T cells to protect against HSV-1-infection is also compromised. These results provide a contributing cause for the frequent and devastating viral infections seen in DOCK2-deficient patients and improve our understanding of anti-viral CD8+ T cell immunity.

17.
J Exp Med ; 203(7): 1773-83, 2006 Jul 10.
Article in English | MEDLINE | ID: mdl-16801401

ABSTRACT

Divergent hypotheses exist to explain how signaling by the B cell receptor (BCR) is initiated after antigen binding and how it is qualitatively altered in anergic B cells to selectively uncouple from nuclear factor kappaB and c-Jun N-terminal kinase pathways while continuing to activate extracellular signal-regulated kinase and calcium-nuclear factor of activated T cell pathways. Here we find that BCRs on anergic cells are endocytosed at a very enhanced rate upon binding antigen, resulting in a large steady-state pool of intracellularly sequestered receptors that appear to be continuously cycling between surface and intracellular compartments. This endocytic mechanism is exquisitely sensitive to the lowering of plasma membrane cholesterol by methyl-beta-cyclodextrin, and, when blocked in this way, the sequestered BCRs return to the cell surface and RelA nuclear accumulation is stimulated. In contrast, when plasma membrane cholesterol is lowered and GM1 sphingolipid markers of membrane rafts are depleted in naive B cells, this does not diminish BCR signaling to calcium or RelA. These results provide a possible explanation for the signaling changes in clonal anergy and indicate that a chief function of membrane cholesterol in B cells is not to initiate BCR signaling, but instead to terminate a subset of signals by rapid receptor internalization.


Subject(s)
B-Lymphocytes/immunology , Cholesterol/physiology , Clonal Anergy/immunology , Membrane Lipids/physiology , NF-kappa B/metabolism , Receptors, Antigen, B-Cell/metabolism , Animals , B-Lymphocytes/metabolism , Clonal Anergy/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/genetics , Signal Transduction/genetics
18.
Cell Rep ; 38(3): 110259, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045301

ABSTRACT

CD21low age-associated or atypical memory B cells are autoantibody enriched and poised for plasma cell differentiation. These cells overaccumulate in chronic infections, autoimmune disease, and immunodeficiency, posing the question of what checkpoints normally oppose their accumulation. Here, we reveal a critical role for paralogous calcium-NFAT-regulated transcription factors EGR2 and EGR3 that are induced in self-reactive B cells. CD21low and B1 B cells lacking EGR2 and EGR3 accumulate and circulate in young mice in numbers 10- to 20-fold greater than normal and overexpress a large set of EGR2 ChIP-seq target genes, including known drivers of plasma cell differentiation. Most follicular B cells constitutively express Egr2 proportionally to surface IgM downregulation by self-antigens, and EGR2/3 deficiency abolishes this cardinal feature of B cell anergy. These results explain the cardinal features of B cell anergy, define a key transcriptional checkpoint repressing CD21low B cell formation, and inform how NFATC1 or EGR2 mutations promote B1 cell-derived chronic lymphocytic leukemias.


Subject(s)
B-Lymphocytes/immunology , Clonal Anergy/immunology , Early Growth Response Protein 2/immunology , Early Growth Response Protein 3/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmunity/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 3/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mice , Receptors, Complement 3d/immunology
19.
Sci Immunol ; 7(71): eabm1803, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35594341

ABSTRACT

Clostridium species are a group of Gram-positive bacteria that cause diseases in humans, such as food poisoning, botulism, and tetanus. Here, we analyzed 10 different Clostridium species and identified that Clostridium septicum, a pathogen that causes sepsis and gas gangrene, activates the mammalian cytosolic inflammasome complex in mice and humans. Mechanistically, we demonstrate that α-toxin secreted by C. septicum binds to glycosylphosphatidylinositol (GPI)-anchored proteins on the host plasma membrane, oligomerizing and forming a membrane pore that is permissive to efflux of magnesium and potassium ions. Efflux of these cytosolic ions triggers the activation of the innate immune sensor NLRP3, inducing activation of caspase-1 and gasdermin D, secretion of the proinflammatory cytokines interleukin-1ß and interleukin-18, pyroptosis, and plasma membrane rupture via ninjurin-1. Furthermore, α-toxin of C. septicum induces rapid inflammasome-mediated lethality in mice and pharmacological inhibition of the NLRP3 inflammasome using MCC950 prevents C. septicum-induced lethality. Overall, our results reveal that cytosolic innate sensing of α-toxin is central to the recognition of C. septicum infection and that therapeutic blockade of the inflammasome pathway may prevent sepsis and death caused by toxin-producing pathogens.


Subject(s)
Bacterial Toxins , GPI-Linked Proteins , Inflammasomes , Animals , Bacterial Toxins/metabolism , Clostridium septicum/chemistry , GPI-Linked Proteins/metabolism , Glycosylphosphatidylinositols/metabolism , Inflammasomes/metabolism , Mammals/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Sepsis
20.
Nat Commun ; 12(1): 2782, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986293

ABSTRACT

Chronic stimulation of CD8+ T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Clonal Anergy/immunology , Early Growth Response Protein 2/metabolism , Lymphopoiesis/physiology , Animals , Antigens/immunology , CD4-Positive T-Lymphocytes/immunology , Early Growth Response Protein 2/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL