Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Cancer Res ; 30(19): 4491-4504, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39078735

ABSTRACT

PURPOSE: FGFR2 fusions occur in 10% to 15% of patients with intrahepatic cholangiocarcinoma (iCCA), potentially benefiting from FGFR inhibitors (FGFRi). We aimed to assess the feasibility of detecting FGFR2 fusions in plasma and explore plasma biomarkers for managing FGFRi treatment. EXPERIMENTAL DESIGN: We conducted a retrospective study in 18 patients with iCCA and known FGFR2 fusions previously identified in tissue samples from prior FGFRi treatment. Both tissue and synchronous plasma samples were analyzed using a custom hybrid capture gene panel with next-generation sequencing (VHIO-iCCA panel) and validated against commercial vendor results. Longitudinal plasma analysis during FGFRi was performed. Subsequently, we explored the correlation between plasma biomarkers, liver enzymes, tumor volume, and clinical outcomes. RESULTS: Sixteen patients (88.9%) were positive for FGFR2 fusion events in plasma. Remarkably, the analysis of plasma suggests that lower levels of ctDNA are linked to clinical benefits from targeted therapy and result in improved progression-free survival and overall survival. Higher concentrations of cell-free DNA before FGFRi treatment were linked to worse overall survival, correlating with impaired liver function and indicating compromised cell-free DNA removal by the liver. Additionally, increased ctDNA or the emergence of resistance mutations allowed earlier detection of disease progression compared with standard radiologic imaging methods. CONCLUSIONS: VHIO-iCCA demonstrated accurate detection of FGFR2 fusions in plasma. The integration of information from various plasma biomarkers holds the potential to predict clinical outcomes and identify treatment failure prior to radiologic progression, offering valuable guidance for the clinical management of patients with iCCA.


Subject(s)
Bile Duct Neoplasms , Biomarkers, Tumor , Cholangiocarcinoma , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Cholangiocarcinoma/blood , Cholangiocarcinoma/diagnosis , Receptor, Fibroblast Growth Factor, Type 2/genetics , Male , Female , Middle Aged , Aged , Liquid Biopsy/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Duct Neoplasms/pathology , Bile Duct Neoplasms/blood , Bile Duct Neoplasms/mortality , Retrospective Studies , Oncogene Proteins, Fusion/genetics , Molecular Targeted Therapy/methods , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , High-Throughput Nucleotide Sequencing/methods , Adult , Prognosis , Protein Kinase Inhibitors/therapeutic use
2.
Cancer Discov ; 13(10): 2180-2191, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37704212

ABSTRACT

Breast cancer occurring during pregnancy (PrBC) and postpartum (PPBC) is usually diagnosed at more advanced stages compared with other breast cancer, worsening its prognosis. PPBC is particularly aggressive, with increased metastatic risk and mortality. Thus, effective screening methods to detect early PrBC and PPBC are needed. We report for the first time that cell-free tumor DNA (ctDNA) is present in breast milk (BM) collected from patients with breast cancer. Analysis of ctDNA from BM detects tumor variants in 87% of the cases by droplet digital PCR, while variants remain undetected in 92% of matched plasma samples. Retrospective next-generation sequencing analysis in BM ctDNA recapitulates tumor variants, with an overall clinical sensitivity of 71.4% and specificity of 100%. In two cases, ctDNA was detectable in BM collected 18 and 6 months prior to standard diagnosis. Our results open up the potential use of BM as a new source for liquid biopsy for PPBC detection. SIGNIFICANCE: For the first time, we show that BM obtained from patients with breast cancer carries ctDNA, surpassing plasma-based liquid biopsy for detection and molecular profiling of early-stage breast cancer, even prior to diagnosis by image. See related commentary by Cunningham and Turner, p. 2125. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Retrospective Studies , Milk, Human , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Mutation
3.
Clin Cancer Res ; 29(2): 432-445, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36374558

ABSTRACT

PURPOSE: Cholangiocarcinoma (CCA) is usually diagnosed at advanced stages, with limited therapeutic options. Preclinical models focused on unresectable metastatic CCA are necessary to develop rational treatments. Pathogenic mutations in IDH1/2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%-50% of patients with CCA. Several types of tumor cells harboring these mutations exhibit homologous recombination deficiency (HRD) phenotype with enhanced sensitivity to PARP inhibitors (PARPi). However, PARPi treatment has not yet been tested for effectiveness in patient-derived models of advanced CCA. EXPERIMENTAL DESIGN: We have established a collection of patient-derived xenografts from patients with unresectable metastatic CCA (CCA_PDX). The CCA_PDXs were characterized at both histopathologic and genomic levels. We optimized a protocol to generate CCA tumoroids from CCA_PDXs. We tested the effects of PARPis in both CCA tumoroids and CCA_PDXs. Finally, we used the RAD51 assay to evaluate the HRD status of CCA tissues. RESULTS: This collection of CCA_PDXs recapitulates the histopathologic and molecular features of their original tumors. PARPi treatments inhibited the growth of CCA tumoroids and CCA_PDXs with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1. In line with these findings, only CCA_PDX and CCA patient biopsy samples with mutations of BRCA2 showed RAD51 scores compatible with HRD. CONCLUSIONS: Our results suggest that patients with advanced CCA with pathogenic mutations of BRCA2, but not those with mutations of IDH1, ARID1A, or BAP1, are likely to benefit from PARPi therapy. This collection of CCA_PDXs provides new opportunities for evaluating drug response and prioritizing clinical trials.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Drug Evaluation, Preclinical , Heterografts , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics
4.
Clin Cancer Res ; 28(8): 1662-1671, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35042699

ABSTRACT

PURPOSE: Treatment options for advanced cholangiocarcinoma are limited and prognosis is poor. Cholangiocarcinomas are highly heterogeneous at the molecular level, with divergent patterns between intrahepatic and extrahepatic forms, intrahepatic being particularly rich in actionable alterations. We compared survival in patients with advanced cholangiocarcinoma harboring alterations matched to targeted drugs, with patients harboring nonactionable alterations. EXPERIMENTAL DESIGN: Patients with cholangiocarcinoma treated between 2011 and 2020 at one institution, with available molecular analyses, were retrospectively reviewed. Genomic alteration actionability was classified according to the ESMO Scale for Clinical Actionability of Molecular Targets (ESCAT) and correlated with efficacy endpoints. RESULTS: Of 327 patients included, 78.9% had intrahepatic cholangiocarcinoma, 97.9% had received chemotherapy for metastatic disease. Actionable molecular alterations per ESCAT were identified in 184 patients (56.3%), including IDH1 mutations and FGFR2 fusions (23.1% and 8.0% of patients with intrahepatic cholangiocarcinoma, respectively). Median overall survival in 50 patients with ESCAT I-IV alterations who received matched therapy (48 with intrahepatic cholangiocarcinoma) was 22.6 months [95% confidence interval (CI), 20.1-32.8], compared with 14.3 months (95% CI 11.9-18.1) in 130 patients without actionable ESCAT alterations (HR, 0.58; 95% CI, 0.40-0.85; P = 0.005). Among patients receiving matched targeted therapy, median progression-free survival was longer for patients with alterations classified as ESCAT I-II compared with ESCAT III-IV (5.0 vs. 1.9 months; HR, 0.36; 95% CI, 0.15-0.87; P = 0.02). CONCLUSIONS: ESCAT represents a tool to guide clinicians in fine-tuning use of molecular profiling data to choose matched targeted therapies. Our data demonstrate that targeted treatment administered per alteration actionability according to ESCAT is associated with improved survival in cholangiocarcinoma, particularly in ESCAT I-II intrahepatic cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/pathology , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Cholangiocarcinoma/pathology , Genomics , Humans , Molecular Targeted Therapy , Retrospective Studies
5.
J Natl Cancer Inst ; 110(8): 914-917, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29529211

ABSTRACT

Heat shock proteins (HSPs) are molecular chaperones that maintain proteins in their correct conformation to ensure stability and protect carcinoma cells from apoptosis. HSP90 inhibitors (HSP90i) block multiple targets simultaneously, and despite responses in a selected population, no HSP90i have yet been approved. We present a patient with a lung tumor with an exceptional response to cisplatin/gemcitabine in combination with HSP90i, which nowadays continues with HSP90i maintenance after three years. Whole-exome sequencing of the lung tumor unveiled a BRCA1/2 deficiency mutational signature, and mutation analysis confirmed a germline BRCA1 mutation. The striking efficacy of HSP90i plus chemotherapy vs chemotherapy alone was reproduced in a patient-derived xenograft (PDX) model from a breast cancer patient with a BRCA1 mutation (mean tumor volume [SD], No. of tumors: vehicle 8.38 [7.07] mm3, n = 3; HSP90i 4.18 [1.93] mm3, n = 5; cisplatin plus gemcitabine 3.31 [1.95] mm3, n = 5; cisplatin plus gemcitabine plus HSP90i 0.065 [0.076] mm3, n = 6). This case and the PDX demonstrate the efficacy for therapeutic inhibition of HSP90 in a BRCA-mutated patient, opening a new potential avenue for better identifying patients who might benefit most from HSP90i.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , BRCA1 Protein/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Germ-Line Mutation , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/administration & dosage , Lung Neoplasms/drug therapy , Resorcinols/administration & dosage , Adult , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/drug therapy , Carcinoma, Ductal, Breast/genetics , Carcinoma, Ductal, Breast/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Cisplatin/administration & dosage , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Maintenance Chemotherapy , Treatment Outcome , Gemcitabine
6.
Toxicol In Vitro ; 27(4): 1410-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22910125

ABSTRACT

Many adverse drug reactions leading to hepatotoxicity are caused by the cytochrome P450-dependent activation of non-toxic drugs or chemicals into reactive metabolites. To this end, adenoviruses were used as a tool to efficiently deliver specific CYP genes into cultured cells (i.e., human hepatoma cell line HepG2). Recombinant-defective adenoviral vectors encoding for genes CYP3A4 (Adv-CYP3A4), CYP2E1 (Adv-CYP2E1), CYP2A6 (Adv-CYP2A6) and CYP1A2 (Adv-CYP1A2) were used to confer specific CYP drug metabolic capabilities to HepG2 cells. Upgraded cells transiently expressed single specific cytochrome P450 enzymatic activities in terms of the number of the infecting virus particles used in their transduction. HepG2 cells transduced with adenoviruses and wild HepG2 cells cultured in 96 well-plates were incubated in the presence of model compounds, some of which can be metabolized to reactive metabolites. After compound exposure, cell viability was assessed by the commonly used MTT assay. The results confirm that the cell-based assay is a valuable tool in toxicology assessments and high-throughput screenings to detect cytotoxicity mediated by cytochrome P450 biotransformation in preclinical drug development. The assay also has a potential applicability in other industrial sectors such as the chemical industry.


Subject(s)
Adenoviridae/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Pharmaceutical Preparations/metabolism , Toxicity Tests, Acute/methods , Biotransformation , Cell Survival , Genetic Vectors , Hep G2 Cells , Humans , Transduction, Genetic
7.
Int J Nanomedicine ; 7: 1275-86, 2012.
Article in English | MEDLINE | ID: mdl-22419874

ABSTRACT

Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady™ intestinal barrier model or the more permeable mucus-secreting CacoGoblet™ model.


Subject(s)
Colon/metabolism , Magnetite Nanoparticles/chemistry , Anions/chemistry , Anions/pharmacokinetics , Caco-2 Cells , Cations/chemistry , Cations/pharmacokinetics , Cell Survival/drug effects , Colon/cytology , HT29 Cells , Histocytochemistry , Humans , Intracellular Space , Oleic Acid/chemistry , Oleic Acid/pharmacokinetics , Particle Size , Polyvinyls/chemistry , Spheroids, Cellular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL