ABSTRACT
The zoonotic virus SARS-CoV-2, which causes severe acute respiratory syndrome in humans (COVID-19), has been identified in cats. Notably, most positive cases were in cats that had close contact with infected humans, suggesting a role for humans in animal transmission routes. Previous studies have suggested that animals with immune depletion are more susceptible to SARS-CoV-2 infection. To date, there is limited evidence of SARS-CoV-2 infections in stray and free-range cats affected by other pathogens. In this study, we investigated infections caused by SARS-CoV-2, Leishmania spp., Toxoplasma gondii, Mycoplasma spp., Bartonella spp., Feline leukemia virus (FeLV), and Feline immunodeficiency virus (FIV) in stray cats from an urban park in Brazil during the COVID-19 pandemic. From February to September 2021, 78 mixed-breed cats were tested for SARS-CoV-2 and hemopathogens using molecular analysis at Américo Renné Giannetti Municipal Park, Belo Horizonte, Minas Gerais, Brazil. An enzyme-linked immunosorbent assay (ELISA) was used to detect IgG in T. gondii. None of the animals in this study showed any clinical signs of infections. The SARS-CoV-2 virus RNA was detected in 7.7 % of cats, and a whole virus genome sequence analysis revealed the SARS-CoV-2 Delta lineage (B.1.617.2). Phylogenetic analysis showed that SARS-CoV-2 isolated from cats was grouped into the sublineage AY.99.2, which matches the epidemiological scenario of COVID-19 in the urban area of our study. Leishmania infantum was detected and sequenced in 9 % of cats. The seroprevalence of T. gondii was 23.1 %. Hemotropic Mycoplasma spp. was detected in 7.7 % of the cats, with Mycoplasma haemofelis and Candidatus Mycoplasma haemominutum being the most common. Bartonella henselae and Bartonella clarridgeiae were detected in 38.5 % of the cats, FeLV was detected in 17,9 %, and none of the cats studied tested positive for FIV. This study reports, for the first time, the SARS-CoV-2 infection with whole-genome sequencing in stray cats in southeastern Brazil and co-infection with other pathogens, including Bartonella spp. and Feline leukemia virus. Our study observed no correlation between SARS-CoV-2 and the other detected pathogens. Our results emphasize the importance of monitoring SARS-CoV-2 in stray cats to characterize their epidemiological role in SARS-CoV-2 infection and reinforce the importance of zoonotic disease surveillance.
Subject(s)
COVID-19 , Cat Diseases , Coinfection , Immunodeficiency Virus, Feline , Cats , Animals , Humans , Coinfection/epidemiology , Coinfection/veterinary , Brazil/epidemiology , Seroepidemiologic Studies , Pandemics , Phylogeny , COVID-19/epidemiology , COVID-19/veterinary , SARS-CoV-2/genetics , Leukemia Virus, Feline , Cat Diseases/epidemiologyABSTRACT
Despite previous reports of SARS-CoV-2 infection in dogs and cats worldwide, the type of swab sample used for its detection through RT-qPCR needs to be better compared and described. Accordingly, as part of a multicenter study in Brazil, the aim of the present study was to assess which rectal or oropharyngeal swabs would be more appropriate for detecting SARS-CoV-2 in cats and dogs, through viral load comparison. Pets of owners diagnosed with COVID-19 in the last 7 days were eligible. A total of 148 animals from four of the five Brazilian geographical regions were analyzed, among which 10/48 cats (20.83%) and 11/100 dogs (11.00%) were positive. The results suggested that oropharyngeal swabs should be considered for SARS-CoV-2 detection, particularly in cats, due to the higher cDNA viral load. Also, the genomic results showed similarities between SARS-CoV-2 animal variants and human variants that were circulating at the time of sampling, thus corroborating the existence of zooanthroponotic transmission. In conclusion, the present study highlighted the importance of SARS-CoV-2 monitoring among cats and dogs, as virus modification may indicate the possibility of mutations in animals and spillover back to owners. Thus, positive individuals should always self-isolate from their pets during COVID-19, to prevent trans-species transmission and mutation.