Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Funct Plant Biol ; 46(12): 1090-1102, 2019 11.
Article in English | MEDLINE | ID: mdl-31665615

ABSTRACT

Climatic variations along with a rise in temperature during the winter season impose severe heat stress during the anthesis stage of spring wheat, resulting in severe yield losses. The present study was conducted to evaluate the influence of heat stress on redox homeostasis in developing anthers and flag leaves of wheat. Five Indian bread wheat genotypes were studied under field conditions during the dry season, with two extreme sowing dates (timely and very late sown) to explore the effect of heat stress on anthesis stage. Results showed that elevated temperature during anthesis caused significant increase in reactive oxygen species (ROS) content and malondialdehyde (MDA) accumulation in developing anthers, triggering pollen mortality. Moreover, defective source (leaf) to the sink (anthers) mobilisation of starch also contributes in reducing pollen viability. However, ROS-induced oxidative damage of developing anthers under heat stress varied among the wheat genotypes depending upon differential antioxidant enzyme activities. Wheat genotype with enhanced antioxidant activities and reduced ROS built up in developing anthers sustained their grain yield, suggesting thermo-tolerance in wheat to be associated with antioxidant enzyme-mediated improved ROS-scavenging mechanism not only in leaves even in developing anther also. In the present study, heat stressed wheat genotype WH 730 exhibited effective source to sink mobilisation and sustainable grain yield with improved ROS scavenging, conferring greater potential for heat tolerance. We conclude that redox homeostasis and balanced source sink activity played a significant role for sustainable yield and heat tolerance in wheat.


Subject(s)
Antioxidants , Triticum , Edible Grain , Heat-Shock Response , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL