Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mol Cell ; 81(22): 4722-4735.e5, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34626566

ABSTRACT

Rapid protein degradation enables cells to quickly modulate protein abundance. Dysregulation of short-lived proteins plays essential roles in disease pathogenesis. A focused map of short-lived proteins remains understudied. Cycloheximide, a translational inhibitor, is widely used in targeted studies to measure degradation kinetics for short-lived proteins. Here, we combined cycloheximide chase assays with advanced quantitative proteomics to map short-lived proteins under translational inhibition in four human cell lines. Among 11,747 quantified proteins, we identified 1,017 short-lived proteins (half-lives ≤ 8 h). These short-lived proteins are less abundant, evolutionarily younger, and less thermally stable than other proteins. We quantified 103 proteins with different stabilities among cell lines. We showed that U2OS and HCT116 cells express truncated forms of ATRX and GMDS, respectively, which have lower stability than their full-length counterparts. This study provides a large-scale resource of human short-lived proteins under translational arrest, leading to untapped avenues of protein regulation for therapeutic interventions.


Subject(s)
Proteins/chemistry , Proteome , Proteomics/methods , Alanine/analogs & derivatives , Alanine/chemistry , Cell Line , Cell Line, Tumor , Cycloheximide/chemistry , Cycloheximide/pharmacology , Fucose/chemistry , Geminin/chemistry , HCT116 Cells , HEK293 Cells , Humans , Peptides/chemistry , Principal Component Analysis , Protein Biosynthesis , Proteins/drug effects , Quality Control , RNA, Small Interfering/metabolism , Telomere/chemistry
2.
Proc Natl Acad Sci U S A ; 117(49): 31094-31104, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33229537

ABSTRACT

The Arg/N-degron pathway targets proteins for degradation by recognizing their N-terminal or internal degrons. Our previous work produced double-knockout (2-KO) HEK293T human cell lines that lacked the functionally overlapping UBR1 and UBR2 E3 ubiquitin ligases of the Arg/N-degron pathway. Here, we studied these cells in conjunction with RNA-sequencing, mass spectrometry (MS), and split-ubiquitin binding assays. 1) Some mRNAs, such as those encoding lactate transporter MCT2 and ß-adrenergic receptor ADRB2, are strongly (∼20-fold) up-regulated in 2-KO cells, whereas other mRNAs, including those encoding MAGEA6 (a regulator of ubiquitin ligases) and LCP1 (an actin-binding protein), are completely repressed in 2-KO cells, in contrast to wild-type cells. 2) Glucocorticoid receptor (GR), an immunity-modulating transcription factor (TF), is up-regulated in 2-KO cells and also physically binds to UBR1, strongly suggesting that GR is a physiological substrate of the Arg/N-degron pathway. 3) PREP1, another TF, was also found to bind to UBR1. 4) MS-based analyses identified ∼160 proteins whose levels were increased or decreased by more than 2-fold in 2-KO cells. For example, the homeodomain TF DACH1 and the neurofilament subunits NF-L (NFEL) and NF-M (NFEM) were expressed in wild-type cells but were virtually absent in 2-KO cells. 5) The disappearance of some proteins in 2-KO cells took place despite up-regulation of their mRNAs, strongly suggesting that the Arg/N-degron pathway can also modulate translation of specific mRNAs. In sum, this multifunctional proteolytic system has emerged as a regulator of mammalian gene expression, in part through conditional targeting of TFs that include ATF3, GR, and PREP1.


Subject(s)
Activating Transcription Factor 3/genetics , Homeodomain Proteins/genetics , Proteolysis , Receptors, Glucocorticoid/genetics , Antigens, Neoplasm/genetics , Eye Proteins/genetics , Gene Expression Regulation/genetics , Gene Knockout Techniques , HEK293 Cells , Humans , Intermediate Filaments/genetics , Mass Spectrometry , Microfilament Proteins/genetics , Monocarboxylic Acid Transporters/genetics , Neoplasm Proteins/genetics , Protein Binding/genetics , RNA-Seq , Receptors, Adrenergic, beta-2/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Ubiquitin/genetics , Ubiquitin-Protein Ligases/genetics
3.
J Biol Chem ; 294(46): 17188-17196, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31619517

ABSTRACT

MicroRNAs (miRNAs or miRs) are small, noncoding RNAs that are implicated in the regulation of most biological processes. Global miRNA biogenesis is altered in many cancers, and RNA-binding proteins play a role in miRNA biogenesis, presenting a promising avenue for targeting miRNA dysregulation in diseases. miR-34a exhibits tumor-suppressive activities by targeting cell cycle regulators CDK4/6 and anti-apoptotic factor BCL-2, among other regulatory pathways such as Wnt, TGF-ß, and Notch signaling. Many cancers exhibit down-regulation or loss of miR-34a, and synthetic miR-34a supplementation has been shown to inhibit tumor growth in vivo However, the post-transcriptional mechanisms that cause miR-34a loss in cancer are not entirely understood. Here, using a proteomics-mediated approach in non-small-cell lung cancer (NSCLC) cells, we identified squamous cell carcinoma antigen recognized by T-cells 3 (SART3) as a putative pre-miR-34a-binding protein. SART3 is a spliceosome recycling factor and nuclear RNA-binding protein with no previously reported role in miRNA regulation. We found that SART3 binds pre-miR-34a with higher specificity than pre-let-7d (used as a negative control) and elucidated a new functional role for SART3 in NSCLC cells. SART3 overexpression increased miR-34a levels, down-regulated the miR-34a target genes CDK4/6, and caused a cell cycle arrest in the G1 phase. In vitro binding experiments revealed that the RNA-recognition motifs within the SART3 sequence are responsible for selective pre-miR-34a binding. Our results provide evidence for a significant role of SART3 in miR-34a biogenesis and cell cycle progression in NSCLC cells.


Subject(s)
Antigens, Neoplasm/genetics , Lung Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA-Binding Proteins/genetics , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Protein Binding/genetics , Proteomics/methods , Spliceosomes/genetics
4.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37961719

ABSTRACT

Precise control of protein ubiquitination is essential for brain development, and hence, disruption of ubiquitin signaling networks can lead to neurological disorders. Mutations of the deubiquitinase USP7 cause the Hao-Fountain syndrome (HAFOUS), characterized by developmental delay, intellectual disability, autism, and aggressive behavior. Here, we report that conditional deletion of USP7 in excitatory neurons in the mouse forebrain triggers diverse phenotypes including sensorimotor deficits, learning and memory impairment, and aggressive behavior, resembling clinical features of HAFOUS. USP7 deletion induces neuronal apoptosis in a manner dependent of the tumor suppressor p53. However, most behavioral abnormalities in USP7 conditional mice persist despite p53 loss. Strikingly, USP7 deletion in the brain perturbs the synaptic proteome and dendritic spine morphogenesis independently of p53. Integrated proteomics analysis reveals that the neuronal USP7 interactome is enriched for proteins implicated in neurodevelopmental disorders and specifically identifies the RNA splicing factor Ppil4 as a novel neuronal substrate of USP7. Knockdown of Ppil4 in cortical neurons impairs dendritic spine morphogenesis, phenocopying the effect of USP7 loss on dendritic spines. These findings reveal a novel USP7-Ppil4 ubiquitin signaling link that regulates neuronal connectivity in the developing brain, with implications for our understanding of the pathogenesis of HAFOUS and other neurodevelopmental disorders.

5.
bioRxiv ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38328167

ABSTRACT

Ubiquitin is a small, highly conserved protein that acts as a posttranslational modification in eukaryotes. Ubiquitination of proteins frequently serves as a degradation signal, marking them for disposal by the proteasome. Here, we report a novel small molecule from a diversity-oriented synthesis library, BRD1732, that is directly ubiquitinated in cells, resulting in dramatic accumulation of inactive ubiquitin monomers and polyubiquitin chains causing broad inhibition of the ubiquitin-proteasome system. Ubiquitination of BRD1732 and its associated cytotoxicity are stereospecific and dependent upon two homologous E3 ubiquitin ligases, RNF19A and RNF19B. Our finding opens the possibility for indirect ubiquitination of a target through a ubiquitinated bifunctional small molecule, and more broadly raises the potential for posttranslational modification in trans.

6.
Nat Biotechnol ; 41(6): 845-857, 2023 06.
Article in English | MEDLINE | ID: mdl-36593396

ABSTRACT

Defining the cellular response to pharmacological agents is critical for understanding the mechanism of action of small molecule perturbagens. Here, we developed a 96-well-plate-based high-throughput screening infrastructure for quantitative proteomics and profiled 875 compounds in a human cancer cell line with near-comprehensive proteome coverage. Examining the 24-h proteome changes revealed ligand-induced changes in protein expression and uncovered rules by which compounds regulate their protein targets while identifying putative dihydrofolate reductase and tankyrase inhibitors. We used protein-protein and compound-compound correlation networks to uncover mechanisms of action for several compounds, including the adrenergic receptor antagonist JP1302, which we show disrupts the FACT complex and degrades histone H1. By profiling many compounds with overlapping targets covering a broad chemical space, we linked compound structure to mechanisms of action and highlighted off-target polypharmacology for molecules within the library.


Subject(s)
Neoplasms , Proteome , Humans , Proteome/metabolism , Proteomics , High-Throughput Screening Assays , Cell Line
7.
Elife ; 102021 12 08.
Article in English | MEDLINE | ID: mdl-34878405

ABSTRACT

Recent advances in mass spectrometry (MS) have enabled quantitative proteomics to become a powerful tool in the field of drug discovery, especially when applied toward proteome-wide target engagement studies. Similar to temperature gradients, increasing concentrations of organic solvents stimulate unfolding and precipitation of the cellular proteome. This property can be influenced by physical association with ligands and other molecules, making individual proteins more or less susceptible to solvent-induced denaturation. Herein, we report the development of proteome-wide solvent shift assays by combining the principles of solvent-induced precipitation (Zhang et al., 2020) with modern quantitative proteomics. Using this approach, we developed solvent proteome profiling (SPP), which is capable of establishing target engagement through analysis of SPP denaturation curves. We readily identified the specific targets of compounds with known mechanisms of action. As a further efficiency boost, we applied the concept of area under the curve analysis to develop solvent proteome integral solubility alteration (solvent-PISA) and demonstrate that this approach can serve as a reliable surrogate for SPP. We propose that by combining SPP with alternative methods, like thermal proteome profiling, it will be possible to increase the absolute number of high-quality melting curves that are attainable by either approach individually, thereby increasing the fraction of the proteome that can be screened for evidence of ligand binding.


Subject(s)
Proteome/metabolism , Proteomics/methods , Solvents/chemistry , Biological Assay , HCT116 Cells , Humans , Mass Spectrometry , Proteomics/instrumentation , Solubility
8.
Nat Biotechnol ; 39(5): 630-641, 2021 05.
Article in English | MEDLINE | ID: mdl-33398154

ABSTRACT

Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)G12C and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.


Subject(s)
Amino Acids/genetics , Antioxidant Response Elements/genetics , Cysteine/genetics , Proteome/genetics , Agammaglobulinaemia Tyrosine Kinase/genetics , Humans , Mass Spectrometry , Proteomics/trends , Proto-Oncogene Proteins p21(ras)/genetics
9.
FEBS Lett ; 594(8): 1307-1318, 2020 04.
Article in English | MEDLINE | ID: mdl-31853978

ABSTRACT

Phosphorylation of translational repressor eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) controls the initiation of cap-dependent translation, a type of protein synthesis that is frequently upregulated in human diseases such as cancer. Because of its critical cellular function, it is not surprising that multiple kinases can post-translationally modify 4E-BP1 to drive aberrant cap-dependent translation. We recently reported a site-selective chemoproteomic method for uncovering kinase-substrate interactions, and using this approach, we discovered the cyclin-dependent kinase (CDK)4 as a new 4E-BP1 kinase. Herein, we describe our extension of this work and reveal the role of CDK4 in modulating 4E-BP1 activity in the transition from mitosis to G1, thereby demonstrating a novel role for this kinase in cell cycle regulation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/metabolism , Mitosis/physiology , Adaptor Proteins, Signal Transducing/genetics , Cell Cycle Proteins/genetics , G1 Phase/genetics , HeLa Cells , Humans , Phosphorylation/drug effects , Piperazines/pharmacology , Protein Biosynthesis , Pyridines/pharmacology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
10.
Cell Chem Biol ; 26(7): 980-990.e8, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31056462

ABSTRACT

Recent estimates of the human proteome suggest there are ∼20,000 protein-coding genes, the protein products of which contain >145,000 phosphosites. Unfortunately, in-depth examination of the human phosphoproteome has outpaced the ability to annotate the kinases that mediate these post-translational modifications. To obtain actionable information about phosphorylation-driven signaling cascades, it is essential to identify the kinases responsible for phosphorylating sites that differ across disease states. To fill in these gaps we have developed an unbiased, chemoproteomic approach for identifying high-confidence kinase-substrate interactions with phosphosite specificity. Using this assay, we uncovered the role of cyclin-dependent kinase 4 (CDK4), a clinically validated kinase important for cell-cycle progression, in regulating cap-dependent translation via phosphorylation of the tumor suppressor 4E-BP1. The discovery of this signaling axis sheds light on the mechanisms by which CDK4/6 inhibitors control cell proliferation and constitutes a successful example of kinase discovery using an activity-based, kinase-directed probe.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 4/metabolism , High-Throughput Screening Assays/instrumentation , High-Throughput Screening Assays/methods , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Cyclin-Dependent Kinase 4/genetics , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Middle Aged , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Proteomics/methods , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
11.
ACS Comb Sci ; 19(12): 763-769, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29112379

ABSTRACT

Human biology is regulated by a complex network of protein-protein interactions (PPIs), and disruption of this network has been implicated in many diseases. However, the targeting of PPIs remains a challenging area for chemical probe and drug discovery. Although many methodologies have been put forth to facilitate these efforts, new technologies are still needed. Current biochemical assays for PPIs are typically limited to motif-domain and domain-domain interactions, and assays that will enable the screening of full-length protein systems, which are more biologically relevant, are sparse. To overcome this barrier, we have developed a new assay technology, "PPI catalytic enzyme-linked click chemistry assay" or PPI cat-ELCCA, which utilizes click chemistry to afford catalytic signal amplification. To validate this approach, we have applied PPI cat-ELCCA to the eIF4E-4E-BP1  and eIF4E-eIF4G PPIs, key regulators of cap-dependent mRNA translation. Using these examples, we have demonstrated that PPI cat-ELCCA is amenable to full-length proteins, large (>200 kDa) and small (∼12 kDa), and is readily adaptable to automated high-throughput screening. Thus, PPI cat-ELCCA represents a powerful new tool in the toolbox of assays available to scientists interested in the targeting of disease-relevant PPIs.


Subject(s)
High-Throughput Screening Assays/methods , Proteins/chemistry , Binding Sites , Humans , Protein Binding , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL