Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
Cell ; 169(7): 1263-1275.e14, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28622511

ABSTRACT

Sepsis is an often lethal syndrome resulting from maladaptive immune and metabolic responses to infection, compromising host homeostasis. Disease tolerance is a defense strategy against infection that preserves host homeostasis without exerting a direct negative impact on pathogens. Here, we demonstrate that induction of the iron-sequestering ferritin H chain (FTH) in response to polymicrobial infections is critical to establish disease tolerance to sepsis. The protective effect of FTH is exerted via a mechanism that counters iron-driven oxidative inhibition of the liver glucose-6-phosphatase (G6Pase), and in doing so, sustains endogenous glucose production via liver gluconeogenesis. This is required to prevent the development of hypoglycemia that otherwise compromises disease tolerance to sepsis. FTH overexpression or ferritin administration establish disease tolerance therapeutically. In conclusion, disease tolerance to sepsis relies on a crosstalk between adaptive responses controlling iron and glucose metabolism, required to maintain blood glucose within a physiologic range compatible with host survival.


Subject(s)
Glucose/metabolism , Iron/metabolism , Sepsis/metabolism , Animals , Apoferritins/genetics , Apoferritins/metabolism , Ceruloplasmin/metabolism , Gluconeogenesis , Glucose-6-Phosphatase/metabolism , Mice , Mice, Inbred C57BL
2.
Cell ; 156(1-2): 84-96, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412651

ABSTRACT

Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.


Subject(s)
Gluconeogenesis , Intestinal Mucosa/metabolism , Intestines/innervation , Animals , Brain/metabolism , Dietary Fats/metabolism , Dietary Fiber/metabolism , Fatty Acids, Volatile/metabolism , Glucose/metabolism , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphatase/metabolism , Homeostasis , Insulin Resistance , Mice , Microbiota , Obesity/metabolism , Oligosaccharides/metabolism , Rats
3.
Cell ; 150(2): 377-88, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22771138

ABSTRACT

Intestinal gluconeogenesis is involved in the control of food intake. We show that mu-opioid receptors (MORs) present in nerves in the portal vein walls respond to peptides to regulate a gut-brain neural circuit that controls intestinal gluconeogenesis and satiety. In vitro, peptides and protein digests behave as MOR antagonists in competition experiments. In vivo, they stimulate MOR-dependent induction of intestinal gluconeogenesis via activation of brain areas receiving inputs from gastrointestinal ascending nerves. MOR-knockout mice do not carry out intestinal gluconeogenesis in response to peptides and are insensitive to the satiety effect induced by protein-enriched diets. Portal infusions of MOR modulators have no effect on food intake in mice deficient for intestinal gluconeogenesis. Thus, the regulation of portal MORs by peptides triggering signals to and from the brain to induce intestinal gluconeogenesis are links in the satiety phenomenon associated with alimentary protein assimilation.


Subject(s)
Dietary Proteins/metabolism , Eating , Gluconeogenesis , Receptors, Opioid, mu/metabolism , Satiety Response , Animals , Brain/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Knockout , Rats , Rats, Sprague-Dawley , Receptors, Opioid, mu/antagonists & inhibitors
4.
Hum Mol Genet ; 31(6): 914-928, 2022 03 21.
Article in English | MEDLINE | ID: mdl-34617103

ABSTRACT

Glycogen Storage Disease Type I (GSDI) is an inherited disease caused by glucose-6 phosphatase (G6Pase) deficiency, leading to a loss of endogenous glucose production and severe hypoglycemia. Moreover, most GSDI patients develop a chronic kidney disease (CKD) due to lipid accumulation in the kidney. Similar to diabetic CKD, activation of renin-angiotensin system (RAS) promotes renal fibrosis in GSDI. Here, we investigated the physiological and molecular effects of RAS blockers in GSDI patients and mice. A retrospective analysis of renal function was performed in 21 GSDI patients treated with RAS blockers. Cellular and metabolic impacts of RAS blockade were analyzed in K.G6pc-/- mice characterized by G6pc1 deletion in kidneys. GSDI patients started RAS blocker treatment at a median age of 21 years and long-term treatment reduced the progression of CKD in about 50% of patients. However, CKD progressed to kidney failure in 20% of treated patients, requiring renal transplantation. In K.G6pc-/- mice, CKD was associated with an impairment of autophagy and ER stress. RAS blockade resulted in a rescue of autophagy and decreased ER stress, concomitantly with decreased fibrosis and improved renal function, but without impact on glycogen and lipid contents. In conclusion, these data confirm the partial beneficial effect of RAS blockers in the prevention of CKD in GSDI. Mechanistically, we show that these effects are linked to a reduction of cell stress, without affecting metabolism.


Subject(s)
Glycogen Storage Disease Type I , Renal Insufficiency, Chronic , Animals , Female , Glucose/metabolism , Glycogen Storage Disease Type I/complications , Glycogen Storage Disease Type I/drug therapy , Glycogen Storage Disease Type I/genetics , Humans , Lipids , Male , Mice , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/genetics , Renin-Angiotensin System/genetics , Retrospective Studies
5.
Neuroendocrinology ; : 1-16, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852578

ABSTRACT

INTRODUCTION: Protein-enriched diets improve glycemic control in diabetes or emotional behavior in depressive patients. In mice, these benefits depend on intestinal gluconeogenesis activation by di-/tripeptides. Intestinal di-/tripeptides absorption is carried out by the peptide transporter 1, PEPT1. The lack of PEPT1 might thus alter glucose and emotional balance. METHODS: To determine the effects of PEPT1 deficiency under standard dietary conditions or during a dietary challenge known to promote both metabolic and cognitive dysfunction, insulin sensitivity, anxiety, and depressive-like traits, hippocampal serotonin (5-HT) and insulin signaling pathway were measured in wild-type (WT) and Pept1-/- mice fed either a chow or a high-fat high-sucrose (HF-HS) diet. RESULTS: Pept1-/- mice exhibited slight defects in insulin sensitivity and emotional behavior, which were aggravated by an HF-HS diet. Pept1-/- mice fed a chow diet had lower hippocampal 5-HT levels and exhibited cerebral insulin resistance under HF-HS diet. These defects were independent of intestinal gluconeogenesis but might be linked to increased plasma amino acids levels. CONCLUSION: Pept1-/- mice develop prediabetic and depressive-like traits and could thus be used to develop strategies to prevent or cure both diseases.

6.
Br J Nutr ; 131(5): 749-761, 2024 03 14.
Article in English | MEDLINE | ID: mdl-37877265

ABSTRACT

Long-chain n-3 PUFA (LC n-3 PUFA) prevent, in rodents, insulin resistance (IR) induced by a high-fat and/or fructose diet but not IR induced by glucocorticoids. In humans, contrasting effects have also been reported. We investigated their effects on insulin sensitivity, feed intake (FI) and body weight gain in genetically insulin resistant male obese (fa/fa) Zucker (ZO) rats during the development of obesity. ZO rats were fed a diet supplemented with 7 % fish oil (FO) + 1 % corn oil (CO) (wt/wt) (ZOFO), while the control group was fed a diet containing 8 % fat from CO (wt/wt) (ZOCO). Male lean Zucker (ZL) rats fed either FO (ZLFO) or CO (ZLCO) diet were used as controls. FO was a marine-derived TAG oil containing EPA 90 mg/g + DHA 430 mg/g. During an oral glucose tolerance test, glucose tolerance remained unaltered by FO while insulin response was reduced in ZOFO only. Liver insulin sensitivity (euglycaemic-hyperinsulinaemic clamp + 2 deoxyglucose) was improved in ZOFO rats, linked to changes in phosphoenolpyruvate carboxykinase expression, activity and glucose-6-phosphatase activity. FI in response to intra-carotid insulin/glucose infusion was decreased similarly in ZOFO and ZOCO. Hypothalamic ceramides levels were lower in ZOFO than in ZOCO. Our study demonstrates that LC n-3 PUFA can minimise weight gain, possibly by alleviating hypothalamic lipotoxicity, and liver IR in genetically obese Zucker rats.


Subject(s)
Fatty Acids, Omega-3 , Insulin Resistance , Humans , Male , Rats , Animals , Insulin Resistance/physiology , Fish Oils/pharmacology , Rats, Zucker , Blood Glucose/metabolism , Insulin/metabolism , Obesity/metabolism , Glucose/pharmacology , Eating , Weight Gain , Fatty Acids, Unsaturated/pharmacology , Corn Oil/pharmacology , Fatty Acids, Omega-3/pharmacology
7.
Hum Mol Genet ; 29(2): 264-273, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31813960

ABSTRACT

Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by mutations in the G6PC gene, encoding the catalytic subunit of glucose-6-phosphatase. Early symptoms include severe fasting intolerance, failure to thrive and hepatomegaly, biochemically associated with nonketotic hypoglycemia, fasting hyperlactidemia, hyperuricemia and hyperlipidemia. Dietary management is the cornerstone of treatment aiming at maintaining euglycemia, prevention of secondary metabolic perturbations and long-term complications, including liver (hepatocellular adenomas and carcinomas), kidney and bone disease (hypovitaminosis D and osteoporosis). As impaired vitamin A homeostasis also associates with similar symptoms and is coordinated by the liver, we here analysed whether vitamin A metabolism is affected in GSD Ia patients and liver-specific G6pc-/- knock-out mice. Serum levels of retinol and retinol binding protein 4 (RBP4) were significantly increased in both GSD Ia patients and L-G6pc-/- mice. In contrast, hepatic retinol levels were significantly reduced in L-G6pc-/- mice, while hepatic retinyl palmitate (vitamin A storage form) and RBP4 levels were not altered. Transcript and protein analyses indicate an enhanced production of retinol and reduced conversion the retinoic acids (unchanged LRAT, Pnpla2/ATGL and Pnpla3 up, Cyp26a1 down) in L-G6pc-/- mice. Aberrant expression of genes involved in vitamin A metabolism was associated with reduced basal messenger RNA levels of markers of inflammation (Cd68, Tnfα, Nos2, Il-6) and fibrosis (Col1a1, Acta2, Tgfß, Timp1) in livers of L-G6pc-/- mice. In conclusion, GSD Ia is associated with elevated serum retinol and RBP4 levels, which may contribute to disease symptoms, including osteoporosis and hepatic steatosis.


Subject(s)
Glucose-6-Phosphatase/metabolism , Glycogen Storage Disease Type I/metabolism , Liver/metabolism , Retinol-Binding Proteins, Plasma/metabolism , Vitamin A/blood , Adolescent , Adult , Animals , Diterpenes/metabolism , Fatty Liver/metabolism , Female , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease Type I/blood , Glycogen Storage Disease Type I/enzymology , Glycogen Storage Disease Type I/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Liver/pathology , Male , Mice , Mice, Knockout , Osteoporosis/metabolism , Retinoic Acid 4-Hydroxylase/genetics , Retinoic Acid 4-Hydroxylase/metabolism , Retinol-Binding Proteins, Plasma/genetics , Retinyl Esters , Vitamin A/analogs & derivatives , Vitamin A/metabolism
8.
J Nutr ; 152(8): 1862-1871, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35511216

ABSTRACT

BACKGROUND: The role of hepatoportal glucose sensors is poorly understood in the context of insulin resistance. OBJECTIVES: We assessed the effects of glucose infusion in the portal vein on insulin tolerance in 2 rat models of insulin resistance, and the role of capsaicin sensitive nerves in this signal. METHODS: Male Wistar rats, 8 weeks old, weighing 250-275 g, were used. Insulin and glucose tolerance were assessed following a 4-hour infusion of either glucose or saline through catheterization in the portal vein in 3 paradigms. In experiment 1, for diet-induced insulin resistance, rats were fed either a control diet (energy content: proteins = 22.5%, carbohydrates = 64.1%, and lipids = 13.4%) or a high-fat diet (energy content: proteins = 15.3%, carbohydrates = 40.3%, and lipids =44.4%) for 4 months. In experiment 2, for centrally induced peripheral insulin resistance, catheters were inserted in the carotid artery to deliver either an emulsion of triglycerides [intralipid (IL)] or saline towards the brain for 24 hours. In experiment 3, for testing the role of capsaicin-sensitive nerves, experiment 2 was repeated following a periportal treatment with capsaicin or vehicle. RESULTS: In experiment 1, when compared to rats fed the control diet, rats fed the high-fat diet exhibited decreased insulin and glucose tolerance (P ≤ 0.05) that was restored with a glucose infusion in the portal vein (P ≤ 0.05). In experiment 2, infusion of a triglyceride emulsion towards the brain (IL rats) decreased insulin and glucose tolerance and increased hepatic endogenous production when compared to saline-infused rats (P ≤ 0.05). Glucose infusion in the portal vein in IL rats restored insulin and glucose tolerance, as well as hepatic glucose production, to controls levels (P ≤ 0.05). In experiment 3, portal infusion of glucose did not increase insulin tolerance in IL rats that received a periportal pretreatment with capsaicin. CONCLUSIONS: Stimulation of hepatoportal glucose sensors increases insulin tolerance in rat models of insulin resistance and requires the presence of capsaicin-sensitive nerves.


Subject(s)
Insulin Resistance , Insulin , Animals , Blood Glucose/metabolism , Capsaicin/metabolism , Capsaicin/pharmacology , Emulsions/metabolism , Glucose/metabolism , Insulin/metabolism , Insulin, Regular, Human/pharmacology , Liver/metabolism , Male , Nerve Fibers/metabolism , Portal Vein/metabolism , Rats , Rats, Wistar , Triglycerides/metabolism
9.
Hepatology ; 72(5): 1638-1653, 2020 11.
Article in English | MEDLINE | ID: mdl-32083759

ABSTRACT

BACKGROUND AND AIMS: Glycogen storage disease (GSD) type 1a is an inborn error of metabolism caused by defective glucose-6-phosphatase catalytic subunit (G6PC) activity. Patients with GSD 1a exhibit severe hepatomegaly due to glycogen and triglyceride (TG) accumulation in the liver. We have shown that the activity of carbohydrate response element binding protein (ChREBP), a key regulator of glycolysis and de novo lipogenesis, is increased in GSD 1a. In the current study, we assessed the contribution of ChREBP to nonalcoholic fatty liver disease (NAFLD) development in a mouse model for hepatic GSD 1a. APPROACH AND RESULTS: Liver-specific G6pc-knockout (L-G6pc-/- ) mice were treated with adeno-associated viruses (AAVs) 2 or 8 directed against short hairpin ChREBP to normalize hepatic ChREBP activity to levels observed in wild-type mice receiving AAV8-scrambled short hairpin RNA (shSCR). Hepatic ChREBP knockdown markedly increased liver weight and hepatocyte size in L-G6pc-/- mice. This was associated with hepatic accumulation of G6P, glycogen, and lipids, whereas the expression of glycolytic and lipogenic genes was reduced. Enzyme activities, flux measurements, hepatic metabolite analysis and very low density lipoprotein (VLDL)-TG secretion assays revealed that hepatic ChREBP knockdown reduced downstream glycolysis and de novo lipogenesis but also strongly suppressed hepatic VLDL lipidation, hence promoting the storage of "old fat." Interestingly, enhanced VLDL-TG secretion in shSCR-treated L-G6pc-/- mice associated with a ChREBP-dependent induction of the VLDL lipidation proteins microsomal TG transfer protein and transmembrane 6 superfamily member 2 (TM6SF2), the latter being confirmed by ChIP-qPCR. CONCLUSIONS: Attenuation of hepatic ChREBP induction in GSD 1a liver aggravates hepatomegaly because of further accumulation of glycogen and lipids as a result of reduced glycolysis and suppressed VLDL-TG secretion. TM6SF2, critical for VLDL formation, was identified as a ChREBP target in mouse liver. Altogether, our data show that enhanced ChREBP activity limits NAFLD development in GSD 1a by balancing hepatic TG production and secretion.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Glycogen Storage Disease Type I/complications , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Adipose Tissue, White/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Dependovirus/genetics , Disease Models, Animal , Gene Knockdown Techniques , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Glucose-6-Phosphatase/genetics , Glycogen/metabolism , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/metabolism , Glycolysis , Hepatocytes , Humans , Lipogenesis , Lipoproteins, VLDL/metabolism , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , RNA, Small Interfering/genetics , Triglycerides/metabolism
10.
Neuroendocrinology ; 111(12): 1249-1265, 2021.
Article in English | MEDLINE | ID: mdl-33429400

ABSTRACT

INTRODUCTION: Several studies have suggested that diet, especially the one enriched in microbiota-fermented fibers or fat, regulates behavior. The underlying mechanisms are currently unknown. We previously reported that certain macronutrients (fermentable fiber and protein) regulate energy homeostasis via the activation of intestinal gluconeogenesis (IGN), which generates a neural signal to the brain. We hypothesized that these nutriments might control behavior using the same gut-brain circuit. METHODS: Wild-type and IGN-deficient mice were fed chow or diets enriched in protein or fiber. Changes in their behavior were assessed using suited tests. Hippocampal neurogenesis, extracellular levels of serotonin, and protein expression levels were assessed by immunofluorescence, in vivo dialysis, and Western blotting, respectively. IGN was rescued by infusing glucose into the portal vein of IGN-deficient mice. RESULTS: We show here that both fiber- and protein-enriched diets exert beneficial actions on anxiety-like and depressive-like behaviors. These benefits do not occur in mice lacking IGN. Consistently, IGN-deficient mice display hallmarks of depressive-like disorders, including decreased hippocampal neurogenesis, basal hyperactivity, and deregulation of the hypothalamic-pituitary-adrenal axis, which are associated with increased expression of the precursor of corticotropin-releasing hormone in the hypothalamus and decreased expression of the glucocorticoid receptor in the hippocampus. These neurobiological alterations are corrected by portal glucose infusion mimicking IGN. CONCLUSION: IGN translates nutritional information, allowing the brain to finely coordinate energy metabolism and behavior.


Subject(s)
Anxiety/metabolism , Behavior, Animal/physiology , Depression/metabolism , Dietary Fiber/metabolism , Dietary Proteins/metabolism , Gluconeogenesis/physiology , Intestine, Small/metabolism , Animals , Disease Models, Animal , Mice
11.
Neuroendocrinology ; 111(6): 555-567, 2021.
Article in English | MEDLINE | ID: mdl-32516785

ABSTRACT

INTRODUCTION: Intestinal gluconeogenesis (IGN) exerts metabolic benefits in energy homeostasis via the neural sensing of portal glucose. OBJECTIVE: The aim of this work was to determine central mechanisms involved in the effects of IGN on the control of energy homeostasis. METHODS: We investigated the effects of glucose infusion into the portal vein, at a rate that mimics IGN, in conscious wild-type, leptin-deficient Ob/Ob and calcitonin gene-related peptide (CGRP)-deficient mice. RESULTS: We report that portal glucose infusion decreases food intake and plasma glucose and induces in the hypothalamic arcuate nucleus (ARC) the phosphorylation of STAT3, the classic intracellular messenger of leptin signaling. This notably takes place in POMC-expressing neurons. STAT3 phosphorylation does not require leptin, since portal glucose effects are observed in leptin-deficient Ob/Ob mice. We hypothesized that the portal glucose effects could require CGRP, a neuromediator previously suggested to suppress hunger. In line with this hypothesis, neither the metabolic benefits nor the phosphorylation of STAT3 in the ARC take place upon portal glucose infusion in CGRP-deficient mice. Moreover, intracerebroventricular injection of CGRP activates hypothalamic phosphorylation of STAT3 in mice, and CGRP does the same in hypothalamic cells. Finally, no metabolic benefit of dietary fibers (known to depend on the induction of IGN), takes place in CGRP-deficient mice. CONCLUSIONS: CGRP-induced phosphorylation of STAT3 in the ARC is part of the neural chain determining the hunger-modulating and glucose-lowering effects of IGN/portal glucose.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Calcitonin Gene-Related Peptide/metabolism , Gluconeogenesis/physiology , Glucose/pharmacology , Intestines/metabolism , Leptin/metabolism , STAT3 Transcription Factor/metabolism , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Calcitonin Gene-Related Peptide/deficiency , Eating/drug effects , Eating/physiology , Glucose/administration & dosage , Infusions, Intravenous , Leptin/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Phosphorylation/physiology , Portal Vein
12.
J Inherit Metab Dis ; 44(4): 879-892, 2021 07.
Article in English | MEDLINE | ID: mdl-33739445

ABSTRACT

Prevention of hypertriglyceridemia is one of the biomedical targets in Glycogen Storage Disease type Ia (GSD Ia) patients, yet it is unclear how hypoglycemia links to plasma triglyceride (TG) levels. We analyzed whole-body TG metabolism in normoglycemic (fed) and hypoglycemic (fasted) hepatocyte-specific glucose-6-phosphatase deficient (L-G6pc-/- ) mice. De novo fatty acid synthesis contributed substantially to hepatic TG accumulation in normoglycemic L-G6pc-/- mice. In hypoglycemic conditions, enhanced adipose tissue lipolysis was the main driver of liver steatosis, supported by elevated free fatty acid concentrations in GSD Ia mice and GSD Ia patients. Plasma very-low-density lipoprotein (VLDL) levels were increased in GSD Ia patients and in normoglycemic L-G6pc-/- mice, and further elevated in hypoglycemic L-G6pc-/- mice. VLDL-TG secretion rates were doubled in normo- and hypoglycemic L-G6pc-/- mice, while VLDL-TG catabolism was selectively inhibited in hypoglycemic L-G6pc-/- mice. In conclusion, fasting-induced hypoglycemia in L-G6pc-/- mice promotes adipose tissue lipolysis and arrests VLDL catabolism. This mechanism likely contributes to aggravated liver steatosis and dyslipidemia in GSD Ia patients with poor glycemic control and may explain clinical heterogeneity in hypertriglyceridemia between GSD Ia patients.


Subject(s)
Glucose/metabolism , Glycogen Storage Disease Type I/complications , Hypertriglyceridemia/etiology , Hypoglycemia/etiology , Lipoproteins, VLDL/metabolism , Triglycerides/metabolism , Adult , Aged , Animals , Disease Models, Animal , Fatty Liver/etiology , Female , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/metabolism , Hepatocytes/metabolism , Humans , Hypertriglyceridemia/prevention & control , Hypoglycemia/metabolism , Lipid Metabolism , Male , Mice , Middle Aged
13.
Gut ; 69(12): 2193-2202, 2020 12.
Article in English | MEDLINE | ID: mdl-32205419

ABSTRACT

OBJECTIVE: Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN: To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS: We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION: We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.


Subject(s)
Gastrointestinal Tract/metabolism , Gluconeogenesis/physiology , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/physiopathology , Animals , Chemokine CCL2/metabolism , Diet, High-Fat , Interleukin-6/metabolism , Liver/innervation , Liver/metabolism , Mice, Knockout , Mice, Transgenic , Neurons/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tyrosine 3-Monooxygenase/metabolism
14.
Hepatology ; 70(6): 2171-2184, 2019 12.
Article in English | MEDLINE | ID: mdl-31102537

ABSTRACT

It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.


Subject(s)
Bile Acids and Salts/biosynthesis , Glucose-6-Phosphate/physiology , Liver/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Cholesterol/metabolism , Humans , Intestinal Mucosa/metabolism , Male , Mice , Mice, Inbred C57BL , Steroid 12-alpha-Hydroxylase/physiology
15.
Mol Ther ; 26(7): 1771-1782, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29784585

ABSTRACT

Glycogen storage diseases (GSDs) of the liver are devastating disorders presenting with fasting hypoglycemia as well as hepatic glycogen and lipid accumulation, which could lead to long-term liver damage. Diet control is frequently utilized to manage the potentially dangerous hypoglycemia, but there is currently no effective pharmacological treatment for preventing hepatomegaly and concurrent liver metabolic abnormalities, which could lead to fibrosis, cirrhosis, and hepatocellular adenoma or carcinoma. In this study, we demonstrate that inhibition of glycogen synthesis using an RNAi approach to silence hepatic Gys2 expression effectively prevents glycogen synthesis, glycogen accumulation, hepatomegaly, fibrosis, and nodule development in a mouse model of GSD III. Mechanistically, reduction of accumulated abnormally structured glycogen prevents proliferation of hepatocytes and activation of myofibroblasts as well as infiltration of mononuclear cells. Additionally, we show that silencing Gys2 expression reduces hepatic steatosis in a mouse model of GSD type Ia, where we hypothesize that the reduction of glycogen also reduces the production of excess glucose-6-phosphate and its subsequent diversion to lipid synthesis. Our results support therapeutic silencing of GYS2 expression to prevent glycogen and lipid accumulation, which mediate initial signals that subsequently trigger cascades of long-term liver injury in GSDs.


Subject(s)
Glycogen Storage Disease Type III/genetics , Glycogen Synthase/genetics , Glycogen/genetics , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver/pathology , RNA Interference/physiology , Animals , Disease Models, Animal , Female , Fibroblasts/pathology , Glucose-6-Phosphate/genetics , Glycogen Storage Disease Type III/pathology , Hepatocytes/pathology , Hepatomegaly/genetics , Male , Mice , Mice, Inbred C57BL
16.
Mol Ther ; 26(3): 890-901, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29396266

ABSTRACT

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder caused by a deficiency of glycogen-debranching enzyme (GDE), which results in profound liver metabolism impairment and muscle weakness. To date, no cure is available for GSDIII and current treatments are mostly based on diet. Here we describe the development of a mouse model of GSDIII, which faithfully recapitulates the main features of the human condition. We used this model to develop and test novel therapies based on adeno-associated virus (AAV) vector-mediated gene transfer. First, we showed that overexpression of the lysosomal enzyme alpha-acid glucosidase (GAA) with an AAV vector led to a decrease in liver glycogen content but failed to reverse the disease phenotype. Using dual overlapping AAV vectors expressing the GDE transgene in muscle, we showed functional rescue with no impact on glucose metabolism. Liver expression of GDE, conversely, had a direct impact on blood glucose levels. These results provide proof of concept of correction of GSDIII with AAV vectors, and they indicate that restoration of the enzyme deficiency in muscle and liver is necessary to address both the metabolic and neuromuscular manifestations of the disease.


Subject(s)
Genetic Therapy , Glycogen Debranching Enzyme System/genetics , Glycogen Storage Disease Type III/genetics , Glycogen Storage Disease Type III/metabolism , Liver/metabolism , Muscle, Skeletal/metabolism , Phenotype , Animals , Biomarkers , Blood Glucose , Dependovirus/genetics , Disease Models, Animal , Enzyme Activation , Gene Expression , Gene Transfer Techniques , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Glycogen/metabolism , Glycogen Debranching Enzyme System/metabolism , Glycogen Storage Disease Type III/diagnosis , Glycogen Storage Disease Type III/therapy , Hepatocytes/metabolism , Male , Mice , Mice, Knockout , Organ Specificity
18.
Hum Mol Genet ; 25(17): 3784-3797, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27436577

ABSTRACT

Glycogen storage disease type I (GSDI) is a rare metabolic disease due to glucose-6 phosphatase deficiency, characterized by fasting hypoglycemia. Patients also develop chronic kidney disease whose mechanisms are poorly understood. To decipher the process, we generated mice with a kidney-specific knockout of glucose-6 phosphatase (K.G6pc-/- mice) that exhibited the first signs of GSDI nephropathy after 6 months of G6pc deletion. We studied the natural course of renal deterioration in K.G6pc-/- mice for 18 months and observed the progressive deterioration of renal functions characterized by early tubular dysfunction and a later destruction of the glomerular filtration barrier. After 15 months, K.G6pc-/- mice developed tubular-glomerular fibrosis and podocyte injury, leading to the development of cysts and renal failure. On the basis of these findings, we were able to detect the development of cysts in 7 out of 32 GSDI patients, who developed advanced renal impairment. Of these 7 patients, 3 developed renal failure. In addition, no renal cysts were detected in six patients who showed early renal impairment. In conclusion, renal pathology in GSDI is characterized by progressive tubular dysfunction and the development of polycystic kidneys that probably leads to the development of irreversible renal failure in the late stages. Systematic observations of cyst development by kidney imaging should improve the evaluation of the disease's progression, independently of biochemical markers.


Subject(s)
Glomerular Filtration Barrier/pathology , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease Type I/complications , Kidney Diseases, Cystic/etiology , Renal Insufficiency/etiology , Adolescent , Adult , Animals , Child , Child, Preschool , Disease Models, Animal , Disease Progression , Female , Gene Knockout Techniques , Glomerular Filtration Barrier/physiopathology , Glycogen Storage Disease Type I/genetics , Glycogen Storage Disease Type I/physiopathology , Humans , Infant , Kidney Diseases, Cystic/pathology , Male , Mice , Middle Aged , Renal Insufficiency/pathology , Young Adult
19.
J Hepatol ; 69(5): 1074-1087, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30193922

ABSTRACT

BACKGROUND & AIMS: Glycogen storage disease type Ia (GSDIa) is a rare genetic disease associated with glycogen accumulation in hepatocytes and steatosis. With age, most adult patients with GSDIa develop hepatocellular adenomas (HCA), which can progress to hepatocellular carcinomas (HCC). In this study, we characterized metabolic reprogramming and cellular defense alterations during tumorigenesis in the liver of hepatocyte-specific G6pc deficient (L.G6pc-/-) mice, which develop all the hepatic hallmarks of GSDIa. METHODS: Liver metabolism and cellular defenses were assessed at pretumoral (four months) and tumoral (nine months) stages in L.G6pc-/- mice fed a high fat/high sucrose (HF/HS) diet. RESULTS: In response to HF/HS diet, hepatocarcinogenesis was highly accelerated since 85% of L.G6pc-/- mice developed multiple hepatic tumors after nine months, with 70% classified as HCA and 30% as HCC. Tumor development was associated with high expression of malignancy markers of HCC, i.e. alpha-fetoprotein, glypican 3 and ß-catenin. In addition, L.G6pc-/- livers exhibited loss of tumor suppressors. Interestingly, L.G6pc-/- steatosis exhibited a low-inflammatory state and was less pronounced than in wild-type livers. This was associated with an absence of epithelial-mesenchymal transition and fibrosis, while HCA/HCC showed a partial epithelial-mesenchymal transition in the absence of TGF-ß1 increase. In HCA/HCC, glycolysis was characterized by a marked expression of PK-M2, decreased mitochondrial OXPHOS and a decrease of pyruvate entry in the mitochondria, confirming a "Warburg-like" phenotype. These metabolic alterations led to a decrease in antioxidant defenses and autophagy and chronic endoplasmic reticulum stress in L.G6pc-/- livers and tumors. Interestingly, autophagy was reactivated in HCA/HCC. CONCLUSION: The metabolic remodeling in L.G6pc-/- liver generates a preneoplastic status and leads to a loss of cellular defenses and tumor suppressors that facilitates tumor development in GSDI. LAY SUMMARY: Glycogen storage disease type Ia (GSD1a) is a rare metabolic disease characterized by hypoglycemia, steatosis, excessive glycogen accumulation and tumor development in the liver. In this study, we have observed that GSDIa livers reprogram their metabolism in a similar way to cancer cells, which facilitates tumor formation and progression, in the absence of hepatic fibrosis. Moreover, hepatic burden due to overload of glycogen and lipids in the cells leads to a decrease in cellular defenses, such as autophagy, which could further promote tumorigenesis in the case of GSDI.


Subject(s)
Carcinoma, Hepatocellular/etiology , Glycogen Storage Disease Type I/complications , Liver Neoplasms/etiology , Liver/metabolism , Animals , Autophagy , Diet, High-Fat , Endoplasmic Reticulum Stress , Epithelial-Mesenchymal Transition , Glucose/metabolism , Glucose-6-Phosphatase/genetics , Glycogen Storage Disease Type I/metabolism , Mice , Mice, Inbred C57BL , Sucrose/administration & dosage
20.
Hepatology ; 66(6): 2042-2054, 2017 12.
Article in English | MEDLINE | ID: mdl-28727166

ABSTRACT

It is a long-standing enigma how glycogen storage disease (GSD) type I patients retain a limited capacity for endogenous glucose production despite the loss of glucose-6-phosphatase activity. Insight into the source of residual endogenous glucose production is of clinical importance given the risk of sudden death in these patients, but so far contradictory mechanisms have been proposed. We investigated glucose-6-phosphatase-independent endogenous glucose production in hepatocytes isolated from a liver-specific GSD Ia mouse model (L-G6pc-/- mice) and performed real-time analysis of hepatic glucose fluxes and glycogen metabolism in L-G6pc-/- mice using state-of-the-art stable isotope methodologies. Here we show that G6pc-deficient hepatocytes are capable of producing glucose. In vivo analysis of hepatic glucose metabolism revealed that the hepatic glucokinase flux was decreased by 95% in L-G6pc-/- mice. It also showed increased glycogen phosphorylase flux in L-G6pc-/- mice, which is coupled to the release of free glucose through glycogen debranching. Although the ex vivo activities of debranching enzyme and lysosomal acid maltase, two major hepatic α-glucosidases, were unaltered in L-G6pc-/- mice, pharmacological inhibition of α-glucosidase activity almost completely abolished residual glucose production by G6pc-deficient hepatocytes. CONCLUSION: Our data indicate that hepatocytes contribute to residual glucose production in GSD Ia. We show that α-glucosidase activity, i.e. glycogen debranching and/or lysosomal glycogen breakdown, contributes to residual glucose production by GSD Ia hepatocytes. A strong reduction in hepatic GCK flux in L-G6pc-/- mice furthermore limits the phosphorylation of free glucose synthesized by G6pc-deficient hepatocytes, allowing the release of glucose into the circulation. The almost complete abrogation of GCK flux in G6pc-deficient liver also explains the contradictory reports on residual glucose production in GSD Ia patients. (Hepatology 2017;66:2042-2054).


Subject(s)
Glucose/metabolism , Glycogen Storage Disease Type I/metabolism , Hepatocytes/metabolism , Animals , Disease Models, Animal , Galactose/metabolism , Glucose-6-Phosphatase/genetics , Glycerol/metabolism , Male , Mice , alpha-Glucosidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL