ABSTRACT
Excessive daytime sleepiness is characterized by a persistent feeling of having trouble staying awake, typically with inappropriate sleep episodes. Orexin (hypocretin) is a neuropeptide that regulates sleep-wake cycles and rapid eye movement sleep. Several large-scale genome-wide association studies (GWASs) in European populations have found genetic variants in orexin receptor-1 (OX1R) and -2 (OX2R) that are associated with sleep traits including daytime sleepiness. To identify genetic variants associated with daytime sleepiness, we performed an association study of genetic variants in prepro-orexin, OX1R, and OX2R in 14,329 Japanese individuals from the Tohoku Medical Megabank Project cohort. A genetic variant in OX2R was significantly associated with self-reported daytime sleepiness after Bonferroni correction (rs188018846: P = 8.4E-05). In addition, a missense variant in OX2R identified by the European GWASs showed a nominally significant association with daytime sleepiness in a Japanese population (p.Ile308Val, rs2653349: P = 0.044). Multiple genetic variants in OX2R can affect daytime sleepiness in general populations.
Subject(s)
Disorders of Excessive Somnolence , Genome-Wide Association Study , Orexin Receptors/metabolism , Disorders of Excessive Somnolence/epidemiology , Disorders of Excessive Somnolence/genetics , Humans , Japan/epidemiology , Orexin Receptors/genetics , Orexins/genetics , Self ReportABSTRACT
Delayed sleep-wake phase disorder (DSWPD) is a subtype of circadian rhythm sleep-wake disorders, and is characterized by an inability to fall asleep until late at night and wake up at a socially acceptable time in the morning. The study aim was to identify low-frequency nonsense and missense variants that are associated with DSWPD. Candidate variants in circadian rhythm-related genes were extracted by integration of genetic variation databases and in silico assessment. We narrowed down the candidates to six variants. To examine whether the six variants are associated with DSWPD, we performed an association study in 236 Japanese patients with DSWPD and 1436 controls. A low-frequency missense variant (p.Val1205Met) in PER2 showed a significant association with DSWPD (2.5% in cases and 1.1% in controls, P = 0.026, odds ratio (OR) = 2.32). The variant was also associated with idiopathic hypersomnia known to have a tendency toward phase delay (P = 0.038, OR = 2.07). PER2 forms a heterodimer with CRY, and the heterodimer plays an important role in the regulation of circadian rhythms. Val1205 is located in the CRY-binding domain of PER2 and was hypothesized to interact with CRY. The p.Val1205Met substitution could be a potential genetic marker for DSWPD.
Subject(s)
Asian People/genetics , Genetic Variation/genetics , Mutation, Missense/genetics , Period Circadian Proteins/genetics , Sleep Disorders, Circadian Rhythm/genetics , Alleles , Case-Control Studies , Gene Frequency/genetics , HumansABSTRACT
Major depressive disorder is a common psychiatric disorder that is thought to be triggered by both genetic and environmental factors. Depressive symptoms are an important public health problem and contribute to vulnerability to major depression. Although a substantial number of genetic and epigenetic studies have been performed to date, the detailed etiology of depression remains unclear and there are no validated biomarkers. DNA methylation is one of the major epigenetic modifications that play diverse roles in the etiology of complex diseases. In this study, we performed an epigenome-wide association study (EWAS) of DNA methylation on subjects with (N = 20) or without (N = 27) depressive symptoms in order to examine whether different levels of DNA methylation were associated with depressive tendencies. Employing methylation-array technology, a total of 363,887 methylation sites across the genomes were investigated and several candidate CpG sites associated with depressive symptoms were identified, especially annotated to genes linked to a G-protein coupled receptor protein signaling pathway. These data provide a strong impetus for validation studies using a larger cohort and support the possibility that G-protein coupled receptor protein signaling pathways are involved in the pathogenesis of depression.
Subject(s)
DNA Methylation , Depression/epidemiology , Depression/genetics , Epigenesis, Genetic , Epigenomics , Genetic Association Studies , Genetic Predisposition to Disease , Computational Biology/methods , CpG Islands , Depressive Disorder, Major/epidemiology , Depressive Disorder, Major/genetics , Epigenomics/methods , Female , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Genome-Wide Association Study , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Male , Molecular Sequence Annotation , Phenotype , Population SurveillanceABSTRACT
Essential hypersomnia (EHS) is a lifelong disorder characterized by excessive daytime sleepiness without cataplexy. EHS is associated with human leukocyte antigen (HLA)-DQB1*06:02, similar to narcolepsy with cataplexy (narcolepsy). Previous studies suggest that DQB1*06:02-positive and -negative EHS are different in terms of their clinical features and follow different pathological pathways. DQB1*06:02-positive EHS and narcolepsy share the same susceptibility genes. In the present study, we report a genome-wide association study with replication for DQB1*06:02-negative EHS (408 patients and 2247 healthy controls, all Japanese). One single-nucleotide polymorphism, rs10988217, which is located 15-kb upstream of carnitine O-acetyltransferase (CRAT), was significantly associated with DQB1*06:02-negative EHS (P = 7.5 Ć 10-9, odds ratio = 2.63). The risk allele of the disease-associated SNP was correlated with higher expression levels of CRAT in various tissues and cell types, including brain tissue. In addition, the risk allele was associated with levels of succinylcarnitine (P = 1.4 Ć 10-18) in human blood. The leading SNP in this region was the same in associations with both DQB1*06:02-negative EHS and succinylcarnitine levels. The results suggest that DQB1*06:02-negative EHS may be associated with an underlying dysfunction in energy metabolic pathways.
Subject(s)
Carnitine O-Acetyltransferase/genetics , Chromosomes, Human, Pair 9/genetics , Disorders of Excessive Somnolence/genetics , HLA-DQ beta-Chains/genetics , Polymorphism, Single Nucleotide , Disorders of Excessive Somnolence/enzymology , Female , Genome-Wide Association Study , Humans , MaleABSTRACT
Narcolepsy, a sleep disorder characterized by excessive daytime sleepiness, cataplexy and rapid eye movement sleep abnormalities, is tightly associated with human leukocyte antigen HLA-DQB1*06:02. DQB1*06:02 is common in the general population (10-30%); therefore, additional genetic factors are needed for the development of narcolepsy. In the present study, HLA-DQB1 in 664 Japanese narcoleptic subjects and 3131 Japanese control subjects was examined to determine whether HLA-DQB1 alleles located in trans of DQB1*06:02 are associated with narcolepsy. The strongest association was with DQB1*06:01 (P = 1.4 Ć 10(-10), odds ratio, OR = 0.39), as reported in previous studies. Additional predisposing effects of DQB1*03:02 were also found (P = 2.5 Ć 10(-9), OR = 1.97). A comparison between DQB1*06:02 heterozygous cases and controls revealed dominant protective effects of DQB1*06:01 and DQB1*05:01. In addition, a single-nucleotide polymorphism-based conditional analysis controlling for the effect of HLA-DQB1 was performed to determine whether there were other independent HLA associations outside of HLA-DQB1. This analysis revealed associations at HLA-DPB1 in the HLA class II region (rs3117242, P = 4.1 Ć 10(-5), OR = 2.45; DPB1*05:01, P = 8.1 Ć 10(-3), OR = 1.39). These results indicate that complex HLA class II associations contribute to the genetic predisposition to narcolepsy.
Subject(s)
Asian People/genetics , Genes, MHC Class II , HLA-DP beta-Chains/genetics , HLA-DQ beta-Chains/genetics , Narcolepsy/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Humans , JapanABSTRACT
BACKGROUND: Over 160 disease phenotypes have been mapped to the major histocompatibility complex (MHC) region on chromosome 6 by genome-wide association study (GWAS), suggesting that the MHC region as a whole may be involved in the aetiology of many phenotypes, including unstudied diseases. The phenome-wide association study (PheWAS), a powerful and complementary approach to GWAS, has demonstrated its ability to discover and rediscover genetic associations. The objective of this study is to comprehensively investigate the MHC region by PheWAS to identify new phenotypes mapped to this genetically important region. METHODS: In the current study, we systematically explored the MHC region using PheWAS to associate 2692 MHC-linked variants (minor allele frequency ≥0.01) with 6221 phenotypes in a cohort of 7481 subjects from the Marshfield Clinic Personalized Medicine Research Project. RESULTS: Findings showed that expected associations previously identified by GWAS could be identified by PheWAS (eg, psoriasis, ankylosing spondylitis, type I diabetes and coeliac disease) with some having strong cross-phenotype associations potentially driven by pleiotropic effects. Importantly, novel associations with eight diseases not previously assessed by GWAS (eg, lichen planus) were also identified and replicated in an independent population. Many of these associated diseases appear to be immune-related disorders. Further assessment of these diseases in 16Ć¢ĀĀ 484 Marshfield Clinic twins suggests that some of these diseases, including lichen planus, may have genetic aetiologies. CONCLUSIONS: These results demonstrate that the PheWAS approach is a powerful and novel method to discover SNP-disease associations, and is ideal when characterising cross-phenotype associations, and further emphasise the importance of the MHC region in human health and disease.
Subject(s)
Chromosomes, Human, Pair 6 , Genetic Association Studies/methods , Immune System Diseases/genetics , Inflammation/genetics , Major Histocompatibility Complex , Polymorphism, Genetic , Adult , Aged , Female , Humans , Lichen Planus/genetics , Male , Middle Aged , Phenotype , White People/geneticsABSTRACT
In humans, narcolepsy is a sleep disorder that is characterized by sleepiness, cataplexy and rapid eye movement (REM) sleep abnormalities. Essential hypersomnia (EHS) is another type of sleep disorder that is characterized by excessive daytime sleepiness without cataplexy. A human leukocyte antigen (HLA) class II allele, HLA-DQB1*06:02, is a major genetic factor for narcolepsy. Almost all narcoleptic patients are carriers of this HLA allele, while 30-50% of EHS patients and 12% of all healthy individuals in Japan carry this allele. The pathogenesis of narcolepsy and EHS is thought to be partially shared. To evaluate the contribution of common single-nucleotide polymorphisms (SNPs) to narcolepsy onset and to assess the common genetic background of narcolepsy and EHS, we conducted a polygenic analysis that included 393 narcoleptic patients, 38 EHS patients with HLA-DQB1*06:02, 119 EHS patients without HLA-DQB1*06:02 and 1582 healthy individuals. We also included 376 individuals with panic disorder and 213 individuals with autism to confirm whether the results were biased. Polygenic risks in narcolepsy were estimated to explain 58.1% (PHLA-DQB1*06:02=2.30 Ć 10-48, Pwhole genome without HLA-DQB1*06:02=6.73 Ć 10-2) including HLA-DQB1*06:02 effects and 1.3% (Pwhole genome without HLA-DQB1*06:02=2.43 Ć 10-2) excluding HLA-DQB1*06:02 effects. The results also indicated that small-effect SNPs contributed to the development of narcolepsy. Reported susceptibility SNPs for narcolepsy in the Japanese population, CPT1B (carnitine palmitoyltransferase 1B), TRA@ (T-cell receptor alpha) and P2RY11 (purinergic receptor P2Y, G-protein coupled, 11), were found to explain 0.8% of narcolepsy onset (Pwhole genome without HLA-DQB1*06:02=9.74 Ć 10-2). EHS patients with HLA-DQB1*06:02 were estimated to have higher shared genetic background to narcoleptic patients than EHS patients without HLA-DQB1*06:02 even when the effects of HLA-DQB1*06:02 were excluded (EHS with HLA-DQB1*06:02: 40.4%, PHLA-DQB1*06:02=7.02 Ć 10-14, Pwhole genome without HLA-DQB1*06:02=1.34 Ć 10-1, EHS without HLA-DQB1*06:02: 0.4%, Pwhole genome without HLA-DQB1*06:02=3.06 Ć 10-1). Meanwhile, the polygenic risks for narcolepsy could not explain the onset of panic disorder and autism, suggesting that our results were reasonable.
Subject(s)
Disorders of Excessive Somnolence/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Multifactorial Inheritance , Narcolepsy/genetics , Alleles , Comparative Genomic Hybridization , Disorders of Excessive Somnolence/diagnosis , Genotype , HLA-DQ beta-Chains/genetics , Humans , Narcolepsy/diagnosis , Phenotype , Polymorphism, Single Nucleotide , RiskABSTRACT
Panic disorder (PD) is an anxiety disorder characterized by panic attacks and anticipatory anxiety. Both genetic and environmental factors are thought to trigger PD onset. Previously, we performed a genome-wide association study (GWAS) for PD and focused on candidate SNPs with the lowest P values. However, there seemed to be a number of polymorphisms which did not reach genome-wide significance threshold due to their low allele frequencies and odds ratios, even though they were truly involved in pathogenesis. Therefore we performed pathway analyses in order to overcome the limitations of conventional single-marker analysis and identify associated SNPs with modest effects. Each pathway analysis indicated that pathways related to immunity showed the strongest association with PD (DAVID, P=2.08Ć10(-6); i-GSEA4GWAS, P<10(-3); ICSNPathway, P<10(-3)). Based on the results of pathway analyses and the previously performed GWAS for PD, we focused on and investigated HLA-B and HLA-DRB1 as candidate susceptibility genes for PD. We typed HLA-B and HLA-DRB1 in 744 subjects with PD and 1418 control subjects. Patients with PD were significantly more likely to carry HLA-DRB1(∗)13:02 (P=2.50Ć10(-4), odds ratio=1.54). Our study provided initial evidence that HLA-DRB1(∗)13:02 and genes involved in immune-related pathways are associated with PD. Future studies are necessary to confirm these results and clarify the underlying mechanisms causing PD.
Subject(s)
Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Panic Disorder/genetics , Polymorphism, Single Nucleotide , Adult , Female , Gene Frequency , Genome-Wide Association Study , Haplotypes , Humans , Male , Middle AgedABSTRACT
Etiology of narcolepsy-cataplexy involves multiple genetic and environmental factors. While the human leukocyte antigen (HLA)-DRB1*15:01-DQB1*06:02 haplotype is strongly associated with narcolepsy, it is not sufficient for disease development. To identify additional, non-HLA susceptibility genes, we conducted a genome-wide association study (GWAS) using Japanese samples. An initial sample set comprising 409 cases and 1562 controls was used for the GWAS of 525,196 single nucleotide polymorphisms (SNPs) located outside the HLA region. An independent sample set comprising 240 cases and 869 controls was then genotyped at 37 SNPs identified in the GWAS. We found that narcolepsy was associated with a SNP in the promoter region of chemokine (C-C motif) receptor 1 (CCR1) (rs3181077, P=1.6Ć10(-5), odds ratio [OR]=1.86). This rs3181077 association was replicated with the independent sample set (P=0.032, OR=1.36). We measured mRNA levels of candidate genes in peripheral blood samples of 38 cases and 37 controls. CCR1 and CCR3 mRNA levels were significantly lower in patients than in healthy controls, and CCR1 mRNA levels were associated with rs3181077 genotypes. In vitro chemotaxis assays were also performed to measure monocyte migration. We observed that monocytes from carriers of the rs3181077 risk allele had lower migration indices with a CCR1 ligand. CCR1 and CCR3 are newly discovered susceptibility genes for narcolepsy. These results highlight the potential role of CCR genes in narcolepsy and support the hypothesis that patients with narcolepsy have impaired immune function.
Subject(s)
Narcolepsy/genetics , Polymorphism, Single Nucleotide , Receptors, CCR1/genetics , Receptors, CCR3/genetics , Asian People , Genome-Wide Association Study , Humans , JapanABSTRACT
In humans, narcolepsy with cataplexy (narcolepsy) is a sleep disorder that is characterized by sleepiness, cataplexy and rapid eye movement (REM) sleep abnormalities. Narcolepsy is caused by a reduction in the number of neurons that produce hypocretin (orexin) neuropeptide. Both genetic and environmental factors contribute to the development of narcolepsy.Rare and large copy number variations (CNVs) reportedly play a role in the etiology of a number of neuropsychiatric disorders. Narcolepsy is considered a neurological disorder; therefore, we sought to investigate any possible association between rare and large CNVs and human narcolepsy. We used DNA microarray data and a CNV detection software application, PennCNV-Affy, to detect CNVs in 426 Japanese narcoleptic patients and 562 healthy individuals. Overall, we found a significant enrichment of rare and large CNVs (frequency ≤1%, size ≥100 kb) in the patients (case-control ratio of CNV count=1.54, P=5.00 Ć 10(-4)). Next, we extended a region-based association analysis by including CNVs with its size ≥30 kb. Rare and large CNVs in PARK2 region showed a significant association with narcolepsy. Four patients were assessed to carry duplications of the gene region, whereas no controls carried the duplication, which was further confirmed by quantitative PCR assay. This duplication was also found in 2 essential hypersomnia (EHS) patients out of 171 patients. Furthermore, a pathway analysis revealed enrichments of gene disruptions by rare and large CNVs in immune response, acetyltransferase activity, cell cycle regulation and regulation of cell development. This study constitutes the first report on the risk association between multiple rare and large CNVs and the pathogenesis of narcolepsy. In the future, replication studies are needed to confirm the associations.
Subject(s)
Asian People/genetics , DNA Copy Number Variations , Genome-Wide Association Study , Narcolepsy/genetics , Case-Control Studies , Gene Regulatory Networks , Humans , Japan , Narcolepsy/metabolism , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Signal Transduction , Ubiquitin-Protein Ligases/geneticsABSTRACT
In neurological and neuropsychiatric diseases, different brain regions are affected, and differences in gene expression patterns could potentially explain this mechanism. However, limited studies have precisely explored gene expression in different regions of the human brain. In this study, we performed long-read RNA sequencing on three different brain regions of the same individuals: the cerebellum, hypothalamus, and temporal cortex. Despite stringent filtering criteria excluding isoforms predicted to be artifacts, over half of the isoforms expressed in multiple samples across multiple regions were found to be unregistered in the GENCODE reference. We then especially focused on genes with different major isoforms in each brain region, even with similar overall expression levels, and identified that many of such genes including GAS7 might have distinct roles in dendritic spine and neuronal formation in each region. We also found that DNA methylation might, in part, drive different isoform expressions in different regions. These findings highlight the significance of analyzing isoforms expressed in disease-relevant sites.
Subject(s)
Brain , Transcriptome , Humans , Cerebellum , Sequence Analysis, RNA , Protein Isoforms/geneticsABSTRACT
Atypical psychosis with a periodic course of exacerbation and features of major psychiatric disorders [schizophrenia (SZ) and bipolar disorder (BD)] has a long history in clinical psychiatry in Japan. Based upon the new criteria of atypical psychosis, a Genome-Wide Association Study (GWAS) was conducted to identify the risk gene or variants. The relationships between atypical psychosis, SZ and BD were then assessed using independent GWAS data. Forty-seven patients with solid criteria of atypical psychosis and 882 normal controls (NCs) were scanned using an Affymetrics 6.0 chip. GWAS SZ data (560 SZ cases and 548 NCs) and GWAS BD (107 cases with BD type 1 and 107 NCs) were compared using gene-based analysis. The most significant SNPs were detected around the CHN2/CPVL genes (rs245914, P = 1.6 Ć 10(-7)) , COL21A1 gene (rs12196860, P = 2.45 Ć 10(-7) ), and PYGL/TRIM9 genes (rs1959536, P = 7.73 Ć 10(-7) ), although none of the single-nucleotide polymorphisms exhibited genome-wide significance (P = 5 Ć 10(-8) ). One of the highest peaks was detected on the major histocompatibility complex region, where large SZ GWASs have previously disclosed an association. The gene-based analysis suggested significant enrichment between SZ and atypical psychosis (P = 0.01), but not BD. This study provides clues about the types of patient whose diagnosis lies between SZ and BD. Studies with larger samples are required to determine the causal variant.
Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Psychotic Disorders/genetics , Bipolar Disorder/genetics , Female , Genetic Markers , Humans , Male , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , SoftwareABSTRACT
Narcolepsy type 1 (NT1) is caused by a loss of hypothalamic orexin-producing cells, and autoreactive CD4+ and CD8+ T cells have been suggested to play a role in the autoimmune mechanism. Although NT1 showed a strong association with human leukocyte antigen (HLA)-DQB1*06:02, the responsible antigens remain unidentified. We analyzed array-based DNA methylation and gene expression data for the HLA region in CD4+ and CD8+ T cells that were separated from the peripheral blood mononuclear cells of Japanese subjects (NT1, N = 42; control, N = 42). As the large number of SNPs in the HLA region might interfere with the affinity of the array probes, we conducted a comprehensive assessment of the reliability of each probe. The criteria were based on a previous study reporting that the presence of frequent SNPs, especially on the 3' side of the probe, makes the probe unreliable. We confirmed that 90.3% of the probes after general filtering in the HLA region do not include frequent SNPs, and are thus suitable for analysis, particularly in Japanese subjects. We then performed an association analysis, and found that several CpG sites in the HLA class II region of the patients were significantly hypomethylated in CD4+ and CD8+ T cells. This association was not detected when the effect of HLA-DQB1*06:02 was considered, suggesting that the hypomethylation was possibly derived from HLA-DQB1*06:02. Further RNA sequencing revealed reduced expression levels of HLA-DQB1 alleles other than HLA-DQB1*06:02 in the patients with NT1. Our results suggest the involvement of epigenetic and expressional changes in HLA-DQB1 in the pathogenesis of NT1.
Subject(s)
CD8-Positive T-Lymphocytes , Narcolepsy , Humans , DNA Methylation , Leukocytes, Mononuclear , Reproducibility of Results , Histocompatibility Antigens , Histocompatibility Antigens Class II , Narcolepsy/genetics , Gene ExpressionABSTRACT
STUDY OBJECTIVES: Narcolepsy type 1 (NT1) is associated with metabolic abnormalities but their etiology remains largely unknown. The gene for carnitine palmitoyltransferase 1B (CPT1B) and abnormally low serum acylcarnitine levels have been linked to NT1. To elucidate the details of altered fatty acid metabolism, we determined levels of individual acylcarnitines and evaluated CPT1 activity in patients with NT1 and other hypersomnia. METHODS: Blood samples from 57 NT1, 51 other hypersomnia patients, and 61 healthy controls were analyzed. The levels of 25 major individual acylcarnitines were determined and the C0/(t[C16] + t[C18]) ratio was used as a CPT1 activity marker. We further performed transcriptome analysis using independent blood samples from 42 NT1 and 42 healthy controls to study the relevance of fatty acid metabolism. NT1-specific changes in CPT1 activity and in expression of related genes were investigated. RESULTS: CPT1 activity was lower in patients with NT1 (p = 0.00064) and other hypersomnia (p = 0.0014) than in controls. Regression analysis revealed that CPT1 activity was an independent risk factor for NT1 (OR: 1.68; p = 0.0031) and for other hypersomnia (OR: 1.64; p = 0.0042). There was a significant interaction between obesity (BMI <25, ≥25) and the SNP rs5770917 status such that nonobese NT1 patients without risk allele had better CPT1 activity (p = 0.0089). The expression levels of carnitine-acylcarnitine translocase (CACT) and CPT2 in carnitine shuttle were lower in NT1 (p = 0.000051 and p = 0.00014, respectively). CONCLUSIONS: These results provide evidences that abnormal fatty acid metabolism is involved in the pathophysiology of NT1 and other hypersomnia.
Subject(s)
Carnitine O-Palmitoyltransferase , Disorders of Excessive Somnolence , Narcolepsy , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine Acyltransferases/metabolism , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Disorders of Excessive Somnolence/complications , Disorders of Excessive Somnolence/genetics , Fatty Acids , Humans , Narcolepsy/genetics , Risk FactorsABSTRACT
Idiopathic hypersomnia (IH) is a rare, heterogeneous sleep disorder characterized by excessive daytime sleepiness. In contrast to narcolepsy type 1, which is a well-defined type of central disorders of hypersomnolence, the etiology of IH is poorly understood. No susceptibility loci associated with IH have been clearly identified, despite the tendency for familial aggregation of IH. We performed a variation screening of the prepro-orexin/hypocretin and orexin receptors genes and an association study for IH in a Japanese population, with replication (598 patients and 9826 controls). We identified a rare missense variant (g.42184347T>C; p.Lys68Arg; rs537376938) in the cleavage site of prepro-orexin that was associated with IH (minor allele frequency of 1.67% in cases versus 0.32% in controls, P = 2.7 Ć 10-8, odds ratio = 5.36). Two forms of orexin (orexin-A and -B) are generated from cleavage of one precursor peptide, prepro-orexin. The difference in cleavage efficiency between wild-type (Gly-Lys-Arg; GKR) and mutant (Gly-Arg-Arg; GRR) peptides was examined by assays using proprotein convertase subtilisin/kexin (PCSK) type 1 and PCSK type 2. In both PCSK1 and PCSK2 assays, the cleavage efficiency of the mutant peptide was lower than that of the wild-type peptide. We also confirmed that the prepro-orexin peptides themselves transmitted less signaling through orexin receptors than mature orexin-A and orexin-B peptides. These results indicate that a subgroup of IH is associated with decreased orexin signaling, which is believed to be a hallmark of narcolepsy type 1.
ABSTRACT
Idiopathic hypersomnia (IH) is a rare sleep disorder characterized by excessive daytime sleepiness, great difficulty upon awakening, and prolonged sleep time. In contrast to narcolepsy type 1, which is a well-recognized hypersomnia, the etiology of IH remains poorly understood. No susceptibility loci for IH have been identified, although familial aggregations have been observed among patients with IH. Narcolepsy type 1 is strongly associated with human leukocyte antigen (HLA)-DQB1*06:02; however, no significant associations between IH and HLA alleles have been reported. To identify genetic variants that affect susceptibility to IH, we performed a genome-wide association study (GWAS) and two replication studies involving a total of 414 Japanese patients with IH and 6587 healthy Japanese individuals. A meta-analysis of the three studies found no single-nucleotide polymorphisms (SNPs) that reached the genome-wide significance level. However, we identified several candidate SNPs for IH. For instance, a common genetic variant (rs2250870) within an intron of PDE9A was suggestively associated with IH. rs2250870 was significantly associated with expression levels of PDE9A in not only whole blood but also brain tissues. The leading SNP in the PDE9A region was the same in associations with both IH and PDE9A expression. PDE9A is a potential target in the treatment of several brain diseases, such as depression, schizophrenia, and Alzheimer's disease. It will be necessary to examine whether PDE9A inhibitors that have demonstrated effects on neurophysiologic and cognitive function can contribute to the development of new treatments for IH, as higher expression levels of PDE9A were observed with regard to the risk allele of rs2250870. The present study constitutes the first GWAS of genetic variants associated with IH. A larger replication study will be required to confirm these associations. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-021-00349-2.
ABSTRACT
Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness, cataplexy, and a pathological manifestation of rapid eye movement during sleep. Narcoleptic pathogenesis is triggered by both genetic and environmental factors. Recently, development of genome-wide association studies (GWAS) has identified new genetic factors, with many more susceptibility genes yet to be elucidated. Using a new approach that consists of a combination of GWAS and an extensive database search for candidate genes, we picked up 202 candidate genes and performed a replication study in 222 narcoleptic patients and 380 controls. Statistical analysis indicated that six genes, NFATC2, SCP2, CACNA1C, TCRA, POLE, and FAM3D, were associated with narcolepsy (P<0.001). Some of these associations were further supported by gene expression analyses and an association study in essential hypersomnia (EHS), CNS hypersonia similar to narcolepsy. This novel approach will be applicable to other GWAS in the search of disease-related susceptibility genes.
Subject(s)
Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Narcolepsy/genetics , Polymorphism, Single Nucleotide , Calcium Channels, L-Type/genetics , Carrier Proteins/genetics , Chi-Square Distribution , Cytokines/genetics , DNA Polymerase II/genetics , Gene Expression Profiling , Gene Frequency , Genotype , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains , HLA-DR Antigens/genetics , HLA-DRB1 Chains , Humans , Linkage Disequilibrium , Membrane Glycoproteins/genetics , NFATC Transcription Factors/genetics , Narcolepsy/pathology , Poly-ADP-Ribose Binding Proteins , Receptors, Antigen, T-Cell, alpha-beta/genetics , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
STUDY OBJECTIVES: Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and cataplexy. The association with human leukocyte antigen (HLA)-DQB1*0602 and T-cell receptor alpha locus suggests that autoimmunity plays a role in narcolepsy. A recent study reported an increased prevalence of autoantibodies against Tribbles homolog 2 (TRIB2) in patients with narcolepsy. To replicate this finding, we examined anti-TRIB2 autoantibodies in Japanese patients with narcolepsy. DESIGN: We examined anti-TRIB2 autoantibodies against a full-length [35S]-labeled TRIB2 antigen in Japanese patients with narcolepsy-cataplexy (n = 88), narcolepsy without cataplexy (n = 18), and idiopathic hypersomnia with long sleep time (n = 11). The results were compared to Japanese healthy controls (n = 87). Thirty-seven healthy control subjects were positive for HLA-DRB1*1501-DQB1*0602. We also examined autoantibodies against another Tribbles homolog, TRIB3, as an experimental control. MEASUREMENTS AND RESULTS: Autoantibodies against TRIB2 were found in 26.1% of patients with narcolepsy-cataplexy, a significantly higher prevalence than the 2.3% in healthy controls. We found that anti-TRIB3 autoantibodies were rare in patients with narcolepsy and showed no association with anti-TRIB2 indices. No significant correlation was found between anti-TRIB2 positivity and clinical information. CONCLUSIONS: We confirmed the higher prevalence and specificity of anti-TRIB2 autoantibodies in Japanese patients with narcolepsy-cataplexy. This suggests a subgroup within narcolepsy-cataplexy might be affected by an anti-TRIB2 autoantibody-mediated autoimmune mechanism.
Subject(s)
Autoantibodies/immunology , Autoimmunity/immunology , Intracellular Signaling Peptides and Proteins/immunology , Narcolepsy/immunology , Adult , Calcium-Calmodulin-Dependent Protein Kinases , Female , Humans , Japan , Male , Radioligand Assay/methodsABSTRACT
Essential hypersomnia (EHS) exhibits excessive daytime sleepiness without cataplexy and is associated with the HLA-DRB1*1501-DQB1*0602 haplotype, similar to narcolepsy with cataplexy. Single-nucleotide polymorphism (SNP) rs1154155 located in the T-cell receptor alpha (TCRA) locus has been recently identified as a novel genetic marker of susceptibility for narcolepsy with cataplexy. We investigated whether the SNP was associated with EHS in the Japanese population. We found a significant association with EHS patients possessing the HLA-DRB1*1501-DQB1*0602 haplotype, compared with HLA-matched healthy individuals (P(allele)=0.008; P(positivity)=5 x 10(-4)), whereas no significant association was observed for EHS patients without this haplotype. Thus, TCRA is a plausible candidate for susceptibility to EHS patients positive for the HLA-DRB1*1501-DQB1*0602 haplotype.
Subject(s)
Disorders of Excessive Somnolence/genetics , Genetic Predisposition to Disease , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Polymorphism, Single Nucleotide , Receptors, Antigen, T-Cell, alpha-beta/genetics , Case-Control Studies , Genetic Markers , HLA-DQ beta-Chains , HLA-DRB1 Chains , Haplotypes , Humans , JapanABSTRACT
The oxytocin receptor (OXTR) gene, which is located on chromosome 3p25.3, has been implicated as a candidate gene for susceptibility of autism spectrum disorder (ASD). Positive associations between OXTR and ASD have been reported in earlier studies. However, the results were inconsistent and demand further studies. In this study, we investigated the associations between OXTR and ASD in a Japanese population by analyzing 11 single-nucleotide polymorphisms (SNPs) using both family-based association test (FBAT) and population-based case-control test. No significant signal was detected in the FBAT test. However, significant differences were observed in allelic frequencies of four SNPs, including rs2254298 between patients and controls. The risk allele of rs2254298 was 'A', which was consistent with the previous study in Chinese, and not with the observations in Caucasian. The difference in the risk allele of this SNP in previous studies might be attributable to an ethnic difference in the linkage disequilibrium structure between the Asians and Caucasians. In addition, haplotype analysis exhibits a significant association between a five-SNP haplotype and ASD, including rs22542898. In conclusion, our study might support that OXTR has a significant role in conferring the risk of ASD in the Japanese population.