Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Psychiatry ; 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38438524

ABSTRACT

CHD8 is an ATP-dependent chromatin-remodeling factor encoded by the most frequently mutated gene in individuals with autism spectrum disorder (ASD). Although many studies have examined the consequences of CHD8 haploinsufficiency in cells and mice, few have focused on missense mutations, the most common type of CHD8 alteration in ASD patients. We here characterized CHD8 missense mutations in ASD patients according to six prediction scores and experimentally examined the effects of such mutations on the biochemical activities of CHD8, neural differentiation of embryonic stem cells, and mouse behavior. Only mutations with high prediction scores gave rise to ASD-like phenotypes in mice, suggesting that not all CHD8 missense mutations detected in ASD patients are directly responsible for the development of ASD. Furthermore, we found that mutations with high scores cause ASD by mechanisms either dependent on or independent of loss of chromatin-remodeling function. Our results thus provide insight into the molecular underpinnings of ASD pathogenesis caused by missense mutations of CHD8.

2.
Mol Psychiatry ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762692

ABSTRACT

Autism Spectrum Disorders (ASD) comprise a range of early age-onset neurodevelopment disorders with genetic heterogeneity. Most ASD related genes are involved in synaptic function, which is regulated by mature brain-derived neurotrophic factor (mBDNF) and its precursor proBDNF in a diametrically opposite manner: proBDNF inhibits while mBDNF potentiates synapses. Here we generated a knock-in mouse line (BDNFmet/leu) in which the conversion of proBDNF to mBDNF is attenuated. Biochemical experiments revealed residual mBDNF but excessive proBDNF in the brain. Similar to other ASD mouse models, the BDNFmet/leu mice showed reduced dendritic arborization, altered spines, and impaired synaptic transmission and plasticity in the hippocampus. They also exhibited ASD-like phenotypes, including stereotypical behaviors and deficits in social interaction. Moreover, the plasma proBDNF/mBDNF ratio was significantly increased in ASD patients compared to normal children in a case-control study. Thus, deficits in proBDNF to mBDNF conversion in the brain may contribute to ASD-like behaviors, and plasma proBDNF/mBDNF ratio may be a potential biomarker for ASD.

3.
Proc Natl Acad Sci U S A ; 119(32): e2106830119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35930667

ABSTRACT

The dentate gyrus (DG) plays critical roles in cognitive functions, such as learning, memory, and spatial coding, and its dysfunction is implicated in various neuropsychiatric disorders. However, it remains largely unknown how information is represented in this region. Here, we recorded neuronal activity in the DG using Ca2+ imaging in freely moving mice and analyzed this activity using machine learning. The activity patterns of populations of DG neurons enabled us to successfully decode position, speed, and motion direction in an open field, as well as current and future location in a T-maze, and each individual neuron was diversely and independently tuned to these multiple information types. Our data also showed that each type of information is unevenly distributed in groups of DG neurons, and different types of information are independently encoded in overlapping, but different, populations of neurons. In alpha-calcium/calmodulin-dependent kinase II (αCaMKII) heterozygous knockout mice, which present deficits in spatial remote and working memory, the decoding accuracy of position in the open field and future location in the T-maze were selectively reduced. These results suggest that multiple types of information are independently distributed in DG neurons.


Subject(s)
Cognition , Dentate Gyrus , Neurons , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cognition/physiology , Dentate Gyrus/cytology , Dentate Gyrus/physiology , Memory, Short-Term/physiology , Mice , Mice, Knockout , Neurons/physiology
4.
Cell ; 137(7): 1235-46, 2009 Jun 26.
Article in English | MEDLINE | ID: mdl-19563756

ABSTRACT

Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca(2+) responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.


Subject(s)
Autistic Disorder/genetics , Autistic Disorder/physiopathology , Behavior, Animal , Chromosomes, Human, Pair 15 , Disease Models, Animal , Animals , Chromosomes, Mammalian , Gene Expression , Humans , Interpersonal Relations , Male , Mice , Neurons/metabolism , Receptor, Serotonin, 5-HT2C/metabolism , Rotarod Performance Test , Signal Transduction
5.
Hum Mol Genet ; 30(18): 1762-1772, 2021 08 28.
Article in English | MEDLINE | ID: mdl-34104969

ABSTRACT

A report of a family of Darier's disease with mood disorders drew attention when the causative gene was identified as ATP2A2 (or SERCA2), which encodes a Ca2+ pump on the endoplasmic reticulum (ER) membrane and is important for intracellular Ca2+ signaling. Recently, it was found that loss-of-function mutations of ATP2A2 confer a risk of neuropsychiatric disorders including depression, bipolar disorder and schizophrenia. In addition, a genome-wide association study found an association between ATP2A2 and schizophrenia. However, the mechanism of how ATP2A2 contributes to vulnerability to these mental disorders is unknown. Here, we analyzed Atp2a2 heterozygous brain-specific conditional knockout (hetero cKO) mice. The ER membranes prepared from the hetero cKO mouse brain showed decreased Ca2+ uptake activity. In Atp2a2 heterozygous neurons, decays of cytosolic Ca2+ level were slower than control neurons after depolarization. The hetero cKO mice showed altered behavioral responses to novel environments and impairments in fear memory, suggestive of enhanced dopamine signaling. In vivo dialysis demonstrated that extracellular dopamine levels in the NAc were indeed higher in the hetero cKO mice. These results altogether indicate that the haploinsufficiency of Atp2a2 in the brain causes prolonged cytosolic Ca2+ transients, which possibly results in enhanced dopamine signaling, a common feature of mood disorders and schizophrenia. These findings elucidate how ATP2A2 mutations causing a dermatological disease may exert their pleiotropic effects on the brain and confer a risk for mental disorders.


Subject(s)
Behavior, Animal , Brain/enzymology , Darier Disease , Dopamine/metabolism , Loss of Function Mutation , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Signal Transduction , Animals , Darier Disease/enzymology , Darier Disease/genetics , Dopamine/genetics , Mice , Mice, Knockout , Organ Specificity/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
6.
Dev Neurosci ; 45(5): 223-233, 2023.
Article in English | MEDLINE | ID: mdl-37044070

ABSTRACT

Valproic acid (VPA) is an antiepileptic drug that inhibits the epileptic activity of neurons mainly by inhibiting sodium channels and GABA transaminase. VPA is also known to inhibit histone deacetylases, which epigenetically modify the cell proliferation/differentiation characteristics of stem/progenitor cells within developing tissues. Recent clinical studies in humans have indicated that VPA exposure in utero increases the risk of autistic features and intellectual disabilities in offspring; we have previously reported that low-dose VPA exposure in utero throughout pregnancy increases the production of projection neurons from neuronal stem/progenitor cells that are distributed in the superficial neocortical layers of the fetal brain. In the present study, we found that in utero VPA-exposed mice exhibited abnormal social interaction, changes in cognitive function, hypersensitivity to pain/heat, and impaired locomotor activity, all of which are characteristic symptoms of autism spectrum disorder in humans. Taken together, our findings indicate that VPA exposure in utero throughout pregnancy alters higher brain function and predisposes individuals to phenotypes that resemble autism and intellectual disability. Furthermore, these symptoms are likely to be due to neocortical dysgenesis that was caused by an increased number of projection neurons in specific layers of the neocortex.

7.
Biochem J ; 479(11): 1127-1145, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35574701

ABSTRACT

Voltage-sensing proteins generally consist of voltage-sensor domains and pore-gate domains, forming the voltage-gated ion channels. However, there are several unconventional voltage-sensor proteins that lack pore-gate domains, conferring them unique voltage-sensing machinery. TMEM266, which is expressed in cerebellum granule cells, is one of the interesting voltage-sensing proteins that has a putative intracellular coiled-coil and a functionally unidentified cytosolic region instead of a pore-gate domain. Here, we approached the molecular function of TMEM266 by performing co-immunoprecipitation experiments. We unexpectedly discovered that TMEM266 proteins natively interact with the novel short form splice variants that only have voltage-sensor domains and putative cytosolic coiled-coil region in cerebellum. The crystal structure of coiled-coil region of TMEM266 suggested that these coiled-coil regions play significant roles in forming homodimers. In vitro expression experiments supported the idea that short form TMEM266 (sTMEM266) or full length TMEM266 (fTMEM266) form homodimers. We also performed proximity labeling mass spectrometry analysis for fTMEM266 and sTMEM266 using Neuro-2A, neuroblastoma cells, and fTMEM266 showed more interacting molecules than sTMEM266, suggesting that the C-terminal cytosolic region in fTMEM266 binds to various targets. Finally, TMEM266-deficient animals showed the moderate abnormality in open-field test. The present study provides clues about the novel voltage-sensing mechanism mediated by TMEM266.


Subject(s)
Cerebellum , Ion Channels , Animals , Ion Channels/metabolism , Mice
8.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32312822

ABSTRACT

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Subject(s)
Autism Spectrum Disorder/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Hippocampus/pathology , Actins/genetics , Adenosine Triphosphate/genetics , Animals , Autism Spectrum Disorder/pathology , Behavior, Animal/physiology , Chromatin/genetics , Chromatin Assembly and Disassembly/genetics , Chromosome Pairing/genetics , Chromosome Pairing/physiology , Corpus Callosum/metabolism , Corpus Callosum/pathology , Dendrites/genetics , Dendrites/physiology , Disease Models, Animal , Gene Expression Regulation/genetics , Hippocampus/metabolism , Humans , Mice , Mice, Knockout , Mutation/genetics , Neurons/metabolism , Neurons/pathology , Transcription Factors/genetics
9.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983014

ABSTRACT

Intense itching significantly reduces the quality of life, and atopic dermatitis is associated with psychiatric conditions, such as anxiety and depression. Psoriasis, another inflammatory skin disease, is often complicated by psychiatric symptoms, including depression; however, the pathogenesis of these mediating factors is poorly understood. This study used a spontaneous dermatitis mouse model (KCASP1Tg) and evaluated the psychiatric symptoms. We also used Janus kinase (JAK) inhibitors to manage the behaviors. Gene expression analysis and RT-PCR of the cerebral cortex of KCASP1Tg and wild-type (WT) mice were performed to examine differences in mRNA expression. KCASP1Tg mice had lower activity, higher anxiety-like behavior, and abnormal behavior. The mRNA expression of S100a8 and Lipocalin 2 (Lcn2) in the brain regions was higher in KCASP1Tg mice. Furthermore, IL-1ß stimulation increased Lcn2 mRNA expression in astrocyte cultures. KCASP1Tg mice had predominantly elevated plasma Lcn2 compared to WT mice, which improved with JAK inhibition, but behavioral abnormalities in KCASP1Tg mice did not improve, despite JAK inhibition. In summary, our data revealed that Lcn2 is closely associated with anxiety symptoms, but the anxiety and depression symptoms caused by chronic skin inflammation may be irreversible. This study demonstrated that active control of skin inflammation is essential for preventing anxiety.


Subject(s)
Dermatitis, Atopic , Quality of Life , Mice , Animals , Dermatitis, Atopic/metabolism , Inflammation/metabolism , Anxiety/genetics , RNA, Messenger , Skin/metabolism
10.
J Biol Chem ; 296: 100620, 2021.
Article in English | MEDLINE | ID: mdl-33811862

ABSTRACT

Mouse models of various neuropsychiatric disorders, such as schizophrenia, often display an immature dentate gyrus, characterized by increased numbers of immature neurons and neuronal progenitors and a dearth of mature neurons. We previously demonstrated that the CRMP5-associated GTPase (CRAG), a short splice variant of Centaurin-γ3/AGAP3, is highly expressed in the dentate gyrus. CRAG promotes cell survival and antioxidant defense by inducing the activation of serum response factors at promyelocytic leukemia protein bodies, which are nuclear stress-responsive domains, during neuronal development. However, the physiological role of CRAG in neuronal development remains unknown. Here, we analyzed the role of CRAG using dorsal forebrain-specific CRAG/Centaurin-γ3 knockout mice. The mice revealed maturational abnormality of the hippocampal granule cells, including increased doublecortin-positive immature neurons and decreased calbindin-positive mature neurons, a typical phenotype of immature dentate gyri. Furthermore, the mice displayed hyperactivity in the open-field test, a common measure of exploratory behavior, suggesting that these mice may serve as a novel model for neuropsychiatric disorder associated with hyperactivity. Thus, we conclude that CRAG is required for the maturation of neurons in the dentate gyrus, raising the possibility that its deficiency might promote the development of psychiatric disorders in humans.


Subject(s)
Dentate Gyrus/pathology , GTP Phosphohydrolases/physiology , Neural Stem Cells/pathology , Neurogenesis , Neurons/pathology , Prosencephalon/pathology , Psychomotor Agitation/pathology , Animals , Dentate Gyrus/metabolism , Exploratory Behavior , Female , Male , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Neurons/metabolism , Prosencephalon/metabolism , Psychomotor Agitation/etiology , Psychomotor Agitation/metabolism
11.
J Neurochem ; 161(2): 129-145, 2022 04.
Article in English | MEDLINE | ID: mdl-35233765

ABSTRACT

Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.


Subject(s)
Biopterins , Phenylketonurias , Animals , Biopterins/analogs & derivatives , Biopterins/metabolism , Dihydropteridine Reductase , Fear , Humans , Mice , Phenylalanine , Phenylketonurias/genetics , Phenylketonurias/metabolism
12.
Hum Mol Genet ; 29(8): 1274-1291, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32142125

ABSTRACT

Mutations in the gene encoding the chromatin remodeler CHD8 are strongly associated with autism spectrum disorder (ASD). CHD8 haploinsufficiency also results in autistic phenotypes in humans and mice. Although myelination defects have been observed in individuals with ASD, whether oligodendrocyte dysfunction is responsible for autistic phenotypes has remained unknown. Here we show that reduced expression of CHD8 in oligodendrocytes gives rise to abnormal behavioral phenotypes in mice. CHD8 was found to regulate the expression of many myelination-related genes and to be required for oligodendrocyte maturation and myelination. Ablation of Chd8 specifically in oligodendrocytes of mice impaired myelination, slowed action potential propagation and resulted in behavioral deficits including increased social interaction and anxiety-like behavior, with similar effects being apparent in Chd8 heterozygous mutant mice. Our results thus indicate that CHD8 is essential for myelination and that dysfunction of oligodendrocytes as a result of CHD8 haploinsufficiency gives rise to several neuropsychiatric phenotypes.


Subject(s)
Autism Spectrum Disorder/genetics , DNA-Binding Proteins/genetics , Neurogenesis/genetics , Transcription Factors/genetics , Animals , Autism Spectrum Disorder/pathology , Chromatin Assembly and Disassembly/genetics , Disease Models, Animal , Haploinsufficiency/genetics , Heterozygote , Humans , Mice , Mutation/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Phenotype
13.
Nature ; 537(7622): 675-679, 2016 09 29.
Article in English | MEDLINE | ID: mdl-27602517

ABSTRACT

Autism spectrum disorder (ASD) comprises a range of neurodevelopmental disorders characterized by deficits in social interaction and communication as well as by restricted and repetitive behaviours. ASD has a strong genetic component with high heritability. Exome sequencing analysis has recently identified many de novo mutations in a variety of genes in individuals with ASD, with CHD8, a gene encoding a chromatin remodeller, being most frequently affected. Whether CHD8 mutations are causative for ASD and how they might establish ASD traits have remained unknown. Here we show that mice heterozygous for Chd8 mutations manifest ASD-like behavioural characteristics including increased anxiety, repetitive behaviour, and altered social behaviour. CHD8 haploinsufficiency did not result in prominent changes in the expression of a few specific genes but instead gave rise to small but global changes in gene expression in the mouse brain, reminiscent of those in the brains of patients with ASD. Gene set enrichment analysis revealed that neurodevelopment was delayed in the mutant mouse embryos. Furthermore, reduced expression of CHD8 was associated with abnormal activation of RE-1 silencing transcription factor (REST), which suppresses the transcription of many neuronal genes. REST activation was also observed in the brains of humans with ASD, and CHD8 was found to interact physically with REST in the mouse brain. Our results are thus consistent with the notion that CHD8 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis probably resulting from a delay in neurodevelopment.


Subject(s)
Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , DNA-Binding Proteins/genetics , Haploinsufficiency/genetics , Animals , Anxiety/complications , Anxiety/genetics , Autism Spectrum Disorder/complications , Brain/metabolism , DNA-Binding Proteins/deficiency , Developmental Disabilities/genetics , Disease Models, Animal , Down-Regulation , Genetic Predisposition to Disease , Heterozygote , Male , Megalencephaly/complications , Megalencephaly/genetics , Mice , Mice, Knockout , Mutation , Penetrance , Phenotype , Repressor Proteins/metabolism , Social Behavior , Transcriptome
14.
J Neurosci ; 40(47): 9012-9027, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33087478

ABSTRACT

Genome stability is essential for brain development and function, as de novo mutations during neuronal development cause psychiatric disorders. However, the contribution of DNA repair to genome stability in neurons remains elusive. Here, we demonstrate that the base excision repair protein DNA polymerase ß (Polß) is involved in hippocampal pyramidal neuron differentiation via a TET-mediated active DNA demethylation during early postnatal stages using Nex-Cre/Polß fl/fl mice of either sex, in which forebrain postmitotic excitatory neurons lack Polß expression. Polß deficiency induced extensive DNA double-strand breaks (DSBs) in hippocampal pyramidal neurons, but not dentate gyrus granule cells, and to a lesser extent in neocortical neurons, during a period in which decreased levels of 5-methylcytosine and 5-hydroxymethylcytosine were observed in genomic DNA. Inhibition of the hydroxylation of 5-methylcytosine by expression of microRNAs miR-29a/b-1 diminished DSB formation. Conversely, its induction by TET1 catalytic domain overexpression increased DSBs in neocortical neurons. Furthermore, the damaged hippocampal neurons exhibited aberrant neuronal gene expression profiles and dendrite formation, but not apoptosis. Comprehensive behavioral analyses revealed impaired spatial reference memory and contextual fear memory in adulthood. Thus, Polß maintains genome stability in the active DNA demethylation that occurs during early postnatal neuronal development, thereby contributing to differentiation and subsequent learning and memory.SIGNIFICANCE STATEMENT Increasing evidence suggests that de novo mutations during neuronal development cause psychiatric disorders. However, strikingly little is known about how DNA repair is involved in neuronal differentiation. We found that Polß, a component of base excision repair, is required for differentiation of hippocampal pyramidal neurons in mice. Polß deficiency transiently led to increased DNA double-strand breaks, but not apoptosis, in early postnatal hippocampal pyramidal neurons. This aberrant double-strand break formation was attributed to active DNA demethylation as an epigenetic regulation. Furthermore, the damaged neurons exhibited aberrant gene expression profiles and dendrite formation, resulting in impaired learning and memory in adulthood. Thus, these findings provide new insight into the contribution of DNA repair to the neuronal genome in early brain development.


Subject(s)
DNA Breaks, Double-Stranded , DNA Methylation/physiology , DNA Polymerase beta/physiology , Hippocampus/cytology , Hippocampus/growth & development , Pyramidal Cells/physiology , 5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/pharmacology , Animals , DNA Polymerase beta/deficiency , DNA Polymerase beta/genetics , DNA-Binding Proteins/genetics , Dendrites/physiology , Female , Learning/physiology , Male , Memory/physiology , Mice , Mice, Knockout , MicroRNAs/biosynthesis , MicroRNAs/genetics , Mitosis/genetics , Neocortex/cytology , Neocortex/physiology , Proto-Oncogene Proteins/genetics
15.
J Neurochem ; 157(3): 624-641, 2021 05.
Article in English | MEDLINE | ID: mdl-33404063

ABSTRACT

The properties of microglia largely differ depending on aging as well as on brain regions. However, there are few studies that investigated the functional importance of such heterogeneous properties of microglia at the molecular level. Voltage-gated proton channel, Hv1/VSOP, could be one of the candidates which confers functional heterogeneity among microglia since it regulates brain oxidative stress in age-dependent manner. In this study, we found that Hv1/VSOP shows brain region-dependent heterogeneity of gene expression with the highest level in the striatum. We studied the importance of Hv1/VSOP in two different brain regions, the cerebral cortex and striatum, and examined their relationship with aging (using mice of different ages). In the cortex, we observed the age-dependent impact of Hv1/VSOP on oxidative stress, microglial morphology, and gene expression profile. On the other hand, we found that the age-dependent significance of Hv1/VSOP was less obvious in the striatum than the cortex. Finally, we performed a battery of behavioral experiments on Hv1/VSOP-deficient mice both at young and aged stages to examine the effect of aging on Hv1/VSOP function. Hv1/VSOP-deficient mice specifically showed a marked difference in behavior in light/dark transition test only at aged stages, indicating that anxiety state is altered in aged Hv1/VSOP mice. This study suggests that a combination of brain region heterogeneity and animal aging underscores the functional importance of Hv1/VSOP in microglia.


Subject(s)
Aging/metabolism , Aging/physiology , Brain Chemistry/physiology , Ion Channels/metabolism , Aging/psychology , Animals , Anxiety/psychology , Behavior, Animal , Cerebral Cortex/metabolism , Computational Biology , Gene Expression Regulation , Ion Channels/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Neostriatum/metabolism , Protein Carbonylation , Transcriptome
16.
Mol Psychiatry ; 25(6): 1229-1244, 2020 06.
Article in English | MEDLINE | ID: mdl-30531938

ABSTRACT

Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches. Here, we demonstrate that dopamine D1 receptors in the dentate gyrus act as a pivotal mediator of antidepressant actions in mice. Chronic administration of a selective serotonin reuptake inhibitor (SSRI), fluoxetine, increases D1 receptor expression in mature granule cells in the dentate gyrus. The increased D1 receptor signaling, in turn, contributes to the actions of chronic fluoxetine treatment, such as suppression of acute stress-evoked serotonin release, stimulation of adult neurogenesis and behavioral improvement. Importantly, under severely stressed conditions, chronic administration of a D1 receptor agonist in conjunction with fluoxetine restores the efficacy of fluoxetine actions on D1 receptor expression and behavioral responses. Thus, our results suggest that stimulation of D1 receptors in the dentate gyrus is a potential adjunctive approach to improve therapeutic efficacy of SSRI antidepressants.


Subject(s)
Antidepressive Agents/pharmacology , Dentate Gyrus/metabolism , Fluoxetine/pharmacology , Receptors, Dopamine D1/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Male , Mice , Mice, Inbred C57BL
17.
Pharmacol Res ; 163: 105246, 2021 01.
Article in English | MEDLINE | ID: mdl-33086082

ABSTRACT

Neuronal cells possess a certain degree of plasticity to recover from cell damage. When the stress levels are higher than their plasticity capabilities, neuronal degeneration is triggered. However, the factors correlated to the plasticity capabilities need to be investigated. In this study, we generated a novel mouse model that able to express in an inducible manner a dominant-negative form of MFN2, a mitochondrial fusion factor. We then compared the phenotype of the mice continuously expressing the mutated MFN2 with that of the mice only transiently expressing it. Remarkably, the phenotypes of the group transiently expressing mutant MFN2 could be divided into 3 types: equivalent to what was observed in the continuous expression group, intermediate between the continuous expression group and the control group, and equivalent to the control group. In particular, in the continuous expression group, we observed remarkable hyperactivity and marked cognitive impairments, which were not seen, or were very mild in the transient expression group. These results indicate that abnormal mitochondrial dynamics lead to stress, triggering neuron degeneration; therefore, the neurodegeneration progression can be prevented via the normalization of the mitochondrial dynamics. Since the availability of mouse models suitable for the reproduction of both neurodegeneration and recovery at least partially is very limited, our mouse model can be a useful tool to investigate neuronal plasticity mechanisms and neurodegeneration.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , GTP Phosphohydrolases/genetics , Mitochondrial Dynamics , Animals , Behavior, Animal , Brain/pathology , Cognitive Dysfunction/pathology , Doxycycline/pharmacology , Hand Strength , Learning , Male , Mice, Transgenic , Mutation , Neuronal Plasticity , Neurons/pathology , Phenotype , Psychomotor Performance
18.
Endocr J ; 68(1): 31-43, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-32879162

ABSTRACT

Recently, chronic hyponatremia, even mild, has shown to be associated with poor quality of life and high mortality. The mechanism by which hyponatremia contributes to those symptoms, however, remains to be elucidated. Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) is a primary cause of hyponatremia. Appropriate animal models are crucial for investigating the pathophysiology of SIADH. A rat model of SIADH has been generally used and mouse models have been rarely used. In this study, we developed a mouse model of chronic SIADH in which stable and sustained hyponatremia occurred after 3-week continuous infusion of the vasopressin V2 receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP) and liquid diet feeding to produce chronic water loading. Weight gain in chronic SIADH mice at week 2 and 3 after starting dDAVP injection was similar to that of control mice, suggesting that the animals adapted to chronic hyponatremia and grew up normally. AQP2 expression in the kidney, which reflects the renal action of vasopressin, was decreased in dDAVP-infused water-loaded mice as compared with control mice that received the same dDAVP infusion but were fed pelleted chow. These results suggest that "vasopressin escape" occurred, which is an important process for limiting potentially fatal severe hyponatremia. Behavioral analyses using the contextual and cued fear conditioning test and T-maze test demonstrated cognitive impairment, especially working memory impairment, in chronic SIADH mice, which was partially restored after correcting hyponatremia. Our results suggest that vasopressin escape occurred in chronic SIADH mice and that chronic hyponatremia contributed to their memory impairment.


Subject(s)
Inappropriate ADH Syndrome/complications , Memory Disorders/etiology , Vasopressins/metabolism , Animals , Behavior, Animal/physiology , Chronic Disease , Disease Models, Animal , Hyponatremia/etiology , Hyponatremia/metabolism , Hyponatremia/psychology , Inappropriate ADH Syndrome/metabolism , Inappropriate ADH Syndrome/pathology , Inappropriate ADH Syndrome/psychology , Male , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL
19.
J Neurosci ; 39(9): 1588-1604, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30606759

ABSTRACT

Neurons have high plasticity in developmental and juvenile stages that decreases in adulthood. Mitochondrial dynamics are highly important in neurons to maintain normal function. To compare dependency on mitochondrial dynamics in juvenile and adult stages, we generated a mouse model capable of selective timing of the expression of a mutant of the mitochondrial fusion factor Mitofusin 2 (MFN2). Mutant expression in the juvenile stage had lethal effects. Contrastingly, abnormalities did not manifest until 150 d after mutant expression during adulthood. After this silent 150 d period, progressive neurodegeneration, abnormal behaviors, and learning and memory deficits similar to those seen in human neurodegenerative diseases were observed. This indicates that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. Our findings highlight the need to consider the timing of disease onset in mimicking human neurodegenerative diseases.SIGNIFICANCE STATEMENT To compare the dependency on mitochondrial dynamics in neurons in juvenile and adult stages, we generated a mouse model expressing a mutant of the mitochondrial fusion factor MFN2 in an arbitrary timing. Juvenile expression of the mutant showed acute and severe phenotypes and had lethal effects; however, post-adult expression induced delayed but progressive phenotypes resembling those found in human neurodegenerative diseases. Our results indicate that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. This strongly suggests that the timing of expression should be considered when establishing an animal model that closely resembles human neurodegenerative diseases.


Subject(s)
Brain/pathology , Charcot-Marie-Tooth Disease/genetics , GTP Phosphohydrolases/genetics , Mitochondrial Proteins/genetics , Mutation, Missense , Animals , Brain/growth & development , Brain/metabolism , Charcot-Marie-Tooth Disease/pathology , Charcot-Marie-Tooth Disease/physiopathology , Disease Models, Animal , GTP Phosphohydrolases/metabolism , Gene Knock-In Techniques/standards , Humans , Learning , Mice , Mice, Inbred C57BL , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Neurons/metabolism , Neurons/pathology
20.
FASEB J ; 33(1): 928-941, 2019 01.
Article in English | MEDLINE | ID: mdl-30085884

ABSTRACT

Insulation by myelin lipids is essential to fast action potential conductivity: changes in their quality or amount can cause several neurologic disorders. Sjögren-Larsson syndrome (SLS) is one such disorder, which is caused by mutations in the fatty aldehyde dehydrogenase ALDH3A2. To date, the molecular mechanism underlying SLS pathology has remained unknown. In this study, we found that Aldh3a2 is expressed in oligodendrocytes and neurons in the mouse brain, and neurons of Aldh3a2 knockout (KO) mice exhibited impaired metabolism of the long-chain base, a component of sphingolipids. Aldh3a2 KO mice showed several abnormalities corresponding to SLS symptoms in behavioral tests, including increased paw slips on a balance beam and light-induced anxiety. In their brain tissue, 2-hydroxygalactosylceramide, an important lipid for myelin function and maintenance, was reduced by the inactivation of fatty acid 2-hydroxylase. Our findings provide important new insights into the molecular mechanisms responsible for neural pathogenesis caused by lipid metabolism abnormalities.-Kanetake, T., Sassa, T., Nojiri, K., Sawai, M., Hattori, S., Miyakawa, T., Kitamura, T., Kihara, A. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide.


Subject(s)
Behavior, Animal , Galactosylceramides/deficiency , Sjogren-Larsson Syndrome/physiopathology , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Animals , Anxiety/metabolism , Depression/metabolism , Galactosylceramides/genetics , Humans , Light , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Sjogren-Larsson Syndrome/genetics , Sjogren-Larsson Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL