Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Plant J ; 117(6): 1873-1892, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168757

ABSTRACT

Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.


Subject(s)
Climate Change , Droughts , Heat-Shock Response , Crops, Agricultural/genetics , Plant Development , Stress, Physiological/genetics
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649234

ABSTRACT

Cold stress is an adverse environmental condition that affects plant growth, development, and crop productivity. Under cold stress conditions, the expression of numerous genes that function in the stress response and tolerance is induced in various plant species, and the dehydration-responsive element (DRE) binding protein 1/C-repeat binding factor (DREB1/CBF) transcription factors function as master switches for cold-inducible gene expression. Cold stress strongly induces these DREB1 genes. Therefore, it is important to elucidate the mechanisms of DREB1 expression in response to cold stress to clarify the perception and response of cold stress in plants. Previous studies indicated that the central oscillator components of the circadian clock, CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), are involved in cold-inducible DREB1 expression, but the underlying mechanisms are not clear. We revealed that the clock-related MYB proteins REVEILLE4/LHY-CCA1-Like1 (RVE4/LCL1) and RVE8/LCL5 are quickly and reversibly transferred from the cytoplasm to the nucleus under cold stress conditions and function as direct transcriptional activators of DREB1 expression. We found that CCA1 and LHY suppressed the expression of DREB1s under unstressed conditions and were rapidly degraded specifically in response to cold stress, which suggests that they act as transcriptional repressors and indirectly regulate the cold-inducible expression of DREB1s We concluded that posttranslational regulation of multiple clock-related transcription factors triggers cold-inducible gene expression. Our findings clarify the complex relationship between the plant circadian clock and the regulatory mechanisms of cold-inducible gene expression.


Subject(s)
Arabidopsis Proteins/biosynthesis , Arabidopsis/metabolism , Cold-Shock Response , Gene Expression Regulation, Plant , Transcription Factors/biosynthesis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Transcription Factors/genetics
3.
Proc Natl Acad Sci U S A ; 116(23): 11528-11536, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31097584

ABSTRACT

The circadian clock provides organisms with the ability to adapt to daily and seasonal cycles. Eukaryotic clocks mostly rely on lineage-specific transcriptional-translational feedback loops (TTFLs). Posttranslational modifications are also crucial for clock functions in fungi and animals, but the posttranslational modifications that affect the plant clock are less understood. Here, using chemical biology strategies, we show that the Arabidopsis CASEIN KINASE 1 LIKE (CKL) family is involved in posttranslational modification in the plant clock. Chemical screening demonstrated that an animal CDC7/CDK9 inhibitor, PHA767491, lengthens the Arabidopsis circadian period. Affinity proteomics using a chemical probe revealed that PHA767491 binds to and inhibits multiple CKL proteins, rather than CDC7/CDK9 homologs. Simultaneous knockdown of Arabidopsis CKL-encoding genes lengthened the circadian period. CKL4 phosphorylated transcriptional repressors PSEUDO-RESPONSE REGULATOR 5 (PRR5) and TIMING OF CAB EXPRESSION 1 (TOC1) in the TTFL. PHA767491 treatment resulted in accumulation of PRR5 and TOC1, accompanied by decreasing expression of PRR5- and TOC1-target genes. A prr5 toc1 double mutant was hyposensitive to PHA767491-induced period lengthening. Together, our results reveal posttranslational modification of transcriptional repressors in plant clock TTFL by CK1 family proteins, which also modulate nonplant circadian clocks.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Casein Kinase I/genetics , Circadian Clocks/genetics , Transcription Factors/genetics , Circadian Rhythm/genetics , Gene Expression Regulation, Plant/genetics , Phosphorylation/genetics , Protein Processing, Post-Translational/genetics , Transcription, Genetic/genetics
4.
Plant Cell Environ ; 44(6): 1788-1801, 2021 06.
Article in English | MEDLINE | ID: mdl-33506954

ABSTRACT

Heat shock factor A1 (HsfA1) family proteins are the master regulators of the heat stress-responsive transcriptional cascade in Arabidopsis. Although 70 kDa heat shock proteins (HSP70s) are known to participate in repressing HsfA1 activity, the mechanisms by which they regulate HsfA1 activity have not been clarified. Here, we report the physiological functions of three cytosolic HSP70s, HSC70-1, HSC70-2 and HSC70-3, under normal and stress conditions. Expression of the HSC70 genes was observed in whole seedlings, and the HSC70 proteins were observed in the cytoplasm and nucleus under normal and stress conditions, as were the HsfA1s. hsc70-1/2 double and hsc70-1/2/3 triple mutants showed higher thermotolerance than the wild-type (WT) plants. Transcriptomic analysis revealed the upregulation of heat stress-responsive HsfA1-downstream genes in hsc70-1/2/3 mutants under normal growth conditions, demonstrating that these HSC70s redundantly function as repressors of HsfA1 activity. Furthermore, hsc70-1/2/3 plants showed a more severe growth delay during the germination stage than the WT plants under high-salt stress conditions, and many seed-specific cluster 2 genes that exhibited suppressed expression during germination were expressed in hsc70-1/2/3 plants, suggesting that these HSC70s also function in the developmental transition from seed to seedling under high-salt conditions by suppressing the expression of cluster 2 genes.


Subject(s)
Arabidopsis Proteins/metabolism , Germination/physiology , HSC70 Heat-Shock Proteins/metabolism , Salt Stress/physiology , Seeds/physiology , Arabidopsis/cytology , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Cytosol/metabolism , Gene Expression Regulation, Plant , HSC70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Mutation , Plant Cells/metabolism , Thermotolerance/physiology
5.
J Biol Chem ; 294(3): 902-917, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30487287

ABSTRACT

Plants have evolved complex systems to rapidly respond to severe stress conditions, such as heat, cold, and dehydration. Dehydration-responsive element-binding protein 2A (DREB2A) is a key transcriptional activator that induces many heat- and drought-responsive genes, increases tolerance to both heat and drought stress, and suppresses plant growth in Arabidopsis thaliana. DREB2A expression is induced by stress, but stabilization of the DREB2A protein in response to stress is essential for activating the expression of downstream stress-inducible genes. Under nonstress growth conditions, an integral negative regulatory domain (NRD) destabilizes DREB2A, but the mechanism by which DREB2A is stabilized in response to stress remains unclear. Here, based on bioinformatics, mutational, MS, and biochemical analyses, we report that Ser/Thr residues in the NRD are phosphorylated under nonstress growth conditions and that their phosphorylation decreases in response to heat. Furthermore, we found that this phosphorylation is likely mediated by casein kinase 1 and is essential for the NRD-dependent, proteasomal degradation of DREB2A under nonstress conditions. These observations suggest that inhibition of NRD phosphorylation stabilizes and activates DREB2A in response to heat stress to enhance plant thermotolerance. Our study reveals the molecular basis for the coordination of stress tolerance and plant growth through stress-dependent transcriptional regulation, which may allow the plants to rapidly respond to fluctuating environmental conditions.


Subject(s)
Adaptation, Physiological , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Heat-Shock Response/physiology , Hot Temperature , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Mutation , Phosphorylation , Transcription Factors/genetics
6.
Plant J ; 97(2): 240-256, 2019 01.
Article in English | MEDLINE | ID: mdl-30285298

ABSTRACT

The molecular breeding of drought stress-tolerant crops is imperative for stable food and biomass production. However, a trade-off exists between plant growth and drought stress tolerance. Many drought stress-tolerant plants overexpressing stress-inducible genes, such as DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 1A (DREB1A), show severe growth retardation. Here, we demonstrate that the growth of DREB1A-overexpressing Arabidopsis plants could be improved by co-expressing growth-enhancing genes whose expression is repressed under drought stress conditions. We used Arabidopsis GA REQUIRING 5 (GA5), which encodes a rate-limiting gibberellin biosynthetic enzyme, and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), which encodes a transcription factor regulating cell growth in response to light and temperature, for growth improvement. We observed an enhanced biomass and floral induction in the GA5 DREB1A and PIF4 DREB1A double overexpressors compared with those in the DREB1A overexpressors. Although the GA5 DREB1A double overexpressors continued to show high levels of drought stress tolerance, the PIF4 DREB1A double overexpressors showed lower levels of stress tolerance than the DREB1A overexpressors due to repressed expression of DREB1A. A multiomics analysis of the GA5 DREB1A double overexpressors showed that the co-expression of GA5 and DREB1A additively affected primary metabolism, gene expression and plant hormone profiles in the plants. These multidirectional analyses indicate that the inherent trade-off between growth and drought stress tolerance in plants can be overcome by appropriate gene-stacking approaches. Our study provides a basis for using genetic modification to improve the growth of drought stress-tolerant plants for the stable production of food and biomass.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Mixed Function Oxygenases/metabolism , Transcription Factors/metabolism , Arabidopsis/growth & development , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Biomass , Cold Temperature , Droughts , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Mixed Function Oxygenases/genetics , Stress, Physiological
7.
Proc Natl Acad Sci U S A ; 114(40): E8528-E8536, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28923951

ABSTRACT

DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A) acts as a key transcription factor in both drought and heat stress tolerance in Arabidopsis and induces the expression of many drought- and heat stress-inducible genes. Although DREB2A expression itself is induced by stress, the posttranslational regulation of DREB2A, including protein stabilization, is required for its transcriptional activity. The deletion of a 30-aa central region of DREB2A known as the negative regulatory domain (NRD) transforms DREB2A into a stable and constitutively active form referred to as DREB2A CA. However, the molecular basis of this stabilization and activation has remained unknown for a decade. Here we identified BTB/POZ AND MATH DOMAIN proteins (BPMs), substrate adaptors of the Cullin3 (CUL3)-based E3 ligase, as DREB2A-interacting proteins. We observed that DREB2A and BPMs interact in the nuclei, and that the NRD of DREB2A is sufficient for its interaction with BPMs. BPM-knockdown plants exhibited increased DREB2A accumulation and induction of DREB2A target genes under heat and drought stress conditions. Genetic analysis indicated that the depletion of BPM expression conferred enhanced thermotolerance via DREB2A stabilization. Thus, the BPM-CUL3 E3 ligase is likely the long-sought factor responsible for NRD-dependent DREB2A degradation. Through the negative regulation of DREB2A stability, BPMs modulate the heat stress response and prevent an adverse effect of excess DREB2A on plant growth. Furthermore, we found the BPM recognition motif in various transcription factors, implying a general contribution of BPM-mediated proteolysis to divergent cellular responses via an accelerated turnover of transcription factors.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Promoter Regions, Genetic , Thermotolerance , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Dehydration , Heat-Shock Response , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Proteolysis , Stress, Physiological , Ubiquitin-Protein Ligases/genetics
8.
Plant Cell ; 28(1): 181-201, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26715648

ABSTRACT

Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Transcription Factors/metabolism , Transcription, Genetic , Amino Acid Motifs , Arabidopsis Proteins/chemistry , Chromatography, Liquid , Conserved Sequence , Genes, Plant , Models, Biological , Protein Binding , Protein Structure, Tertiary , Protoplasts/metabolism , Sequence Deletion/genetics , Structure-Activity Relationship , Tandem Mass Spectrometry , Transcription Factors/chemistry , Transcriptome/genetics
9.
Plant J ; 90(1): 61-78, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28019048

ABSTRACT

In order to analyze the molecular mechanisms underlying the responses of plants to different levels of drought stress, we developed a soil matric potential (SMP)-based irrigation system that precisely controls soil moisture. Using this system, rice seedlings were grown under three different drought levels, denoted Md1, Md2 and Md3, with SMP values set to -9.8, -31.0 and -309.9 kPa, respectively. Although the Md1 treatment did not alter the visible phenotype, the Md2 treatment caused stomatal closure and shoot growth retardation (SGR). The Md3 treatment markedly induced SGR, without inhibition of photosynthesis. More severe drought (Sds) treatment, under which irrigation was terminated, resulted in the wilting of leaves and inhibition of photosynthesis. Metabolome analysis revealed the accumulation of primary sugars under Md3 and Sds and of most amino acids under Sds. The starch content was increased under Md3 and decreased under Sds. Transcriptome data showed that the expression profiles of associated genes supported the observed changes in photosynthesis and metabolites, suggesting that the time lag from SGR to inhibition of photosynthesis might lead to the accumulation of photosynthates under Md3, which can be used as osmolytes under Sds. To gain further insight into the observed SGR, transcriptome and hormonome analyses were performed in specific tissues. The results showed specific decreases in indole-3-acetic acid (IAA) and cytokinin levels in Md2-, Md3- and Sds-treated shoot bases, though the expression levels of hormone metabolism-related genes were not reflected in IAA and cytokinin contents. These observations suggest that drought stress affects the distribution or degradation of cytokinin and IAA molecules.


Subject(s)
Droughts , Oryza/growth & development , Oryza/metabolism , Plant Growth Regulators/metabolism , Seedlings/growth & development , Seedlings/metabolism , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Oryza/genetics , Photosynthesis/genetics , Photosynthesis/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Seedlings/genetics
10.
Plant Biotechnol J ; 15(4): 458-471, 2017 04.
Article in English | MEDLINE | ID: mdl-27683092

ABSTRACT

Although a variety of transgenic plants that are tolerant to drought stress have been generated, many of these plants show growth retardation. To improve drought tolerance and plant growth, we applied a gene-stacking approach using two transcription factor genes: DEHYDRATION-RESPONSIVE ELEMENT-BINDING 1A (DREB1A) and rice PHYTOCHROME-INTERACTING FACTOR-LIKE 1 (OsPIL1). The overexpression of DREB1A has been reported to improve drought stress tolerance in various crops, although it also causes a severe dwarf phenotype. OsPIL1 is a rice homologue of Arabidopsis PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), and it enhances cell elongation by activating cell wall-related gene expression. We found that the OsPIL1 protein was more stable than PIF4 under light conditions in Arabidopsis protoplasts. Transactivation analyses revealed that DREB1A and OsPIL1 did not negatively affect each other's transcriptional activities. The transgenic plants overexpressing both OsPIL1 and DREB1A showed the improved drought stress tolerance similar to that of DREB1A overexpressors. Furthermore, double overexpressors showed the enhanced hypocotyl elongation and floral induction compared with the DREB1A overexpressors. Metabolome analyses indicated that compatible solutes, such as sugars and amino acids, accumulated in the double overexpressors, which was similar to the observations of the DREB1A overexpressors. Transcriptome analyses showed an increased expression of abiotic stress-inducible DREB1A downstream genes and cell elongation-related OsPIL1 downstream genes in the double overexpressors, which suggests that these two transcription factors function independently in the transgenic plants despite the trade-offs required to balance plant growth and stress tolerance. Our study provides a basis for plant genetic engineering designed to overcome growth retardation in drought-tolerant transgenic plants.


Subject(s)
Droughts , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/cytology , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Flowers/cytology , Flowers/genetics , Flowers/metabolism , Oryza/cytology , Oryza/genetics , Oryza/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
11.
Plant Cell ; 26(12): 4954-73, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25490919

ABSTRACT

DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) is a key transcription factor for drought and heat stress tolerance in Arabidopsis thaliana. DREB2A induces the expression of dehydration- and heat stress-inducible genes under the corresponding stress conditions. Target gene selectivity is assumed to require stress-specific posttranslational regulation, but the mechanisms of this process are not yet understood. Here, we identified DNA POLYMERASE II SUBUNIT B3-1 (DPB3-1), which was previously annotated as NUCLEAR FACTOR Y, SUBUNIT C10 (NF-YC10), as a DREB2A interactor, through a yeast two-hybrid screen. The overexpression of DPB3-1 in Arabidopsis enhanced the expression of a subset of heat stress-inducible DREB2A target genes but did not affect dehydration-inducible genes. Similarly, the depletion of DPB3-1 expression resulted in reduced expression of heat stress-inducible genes. Interaction and expression pattern analyses suggested the existence of a trimer comprising NF-YA2, NF-YB3, and DPB3-1 that could synergistically activate a promoter of the heat stress-inducible gene with DREB2A in protoplasts. These results suggest that DPB3-1 could form a transcriptional complex with NF-YA and NF-YB subunits and that the identified trimer enhances heat stress-inducible gene expression during heat stress responses in cooperation with DREB2A. We propose that the identified trimer contributes to the target gene selectivity of DREB2A under heat stress conditions.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/physiology , DNA Polymerase II/physiology , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , DNA Polymerase II/genetics , DNA Polymerase II/metabolism , Gene Knockdown Techniques , Promoter Regions, Genetic , Protoplasts/metabolism , Two-Hybrid System Techniques
12.
Plant J ; 81(3): 505-18, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25495120

ABSTRACT

Soybean (Glycine max) is a globally important crop, and its growth and yield are severely reduced by abiotic stresses, such as drought, heat, and cold. The cis-acting element DRE (dehydration-responsive element)/CRT plays an important role in activating gene expression in response to these stresses. The Arabidopsis DREB1/CBF genes that encode DRE-binding proteins function as transcriptional activators in the cold stress responsive gene expression. In this study, we identified 14 DREB1-type transcription factors (GmDREB1s) from a soybean genome database. The expression of most GmDREB1 genes in soybean was strongly induced by a variety of abiotic stresses, such as cold, drought, high salt, and heat. The GmDREB1 proteins activated transcription via DREs (dehydration-responsive element) in Arabidopsis and soybean protoplasts. Transcriptome analyses using transgenic Arabidopsis plants overexpressing GmDREB1s indicated that many of the downstream genes are cold-inducible and overlap with those of Arabidopsis DREB1A. We then comprehensively analyzed the downstream genes of GmDREB1B;1, which is closely related to DREB1A, using a transient expression system in soybean protoplasts. The expression of numerous genes induced by various abiotic stresses were increased by overexpressing GmDREB1B;1 in soybean, and DREs were the most conserved element in the promoters of these genes. The downstream genes of GmDREB1B;1 included numerous soybean-specific stress-inducible genes that encode an ABA receptor family protein, GmPYL21, and translation-related genes, such as ribosomal proteins. We confirmed that GmDREB1B;1 directly activates GmPYL21 expression and enhances ABRE-mediated gene expression in an ABA-independent manner. These results suggest that GmDREB1 proteins activate the expression of numerous soybean-specific stress-responsive genes under diverse abiotic stress conditions.


Subject(s)
Cold-Shock Response/genetics , Glycine max/genetics , Heat-Shock Response/genetics , Transcription Factors/physiology , Arabidopsis/genetics , Gene Expression Regulation, Plant , Phylogeny , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Glycine max/metabolism , Glycine max/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Plant Biotechnol J ; 14(8): 1756-67, 2016 08.
Article in English | MEDLINE | ID: mdl-26841113

ABSTRACT

The enhancement of heat stress tolerance in crops is an important challenge for food security to facilitate adaptation to global warming. In Arabidopsis thaliana, the transcriptional regulator DNA polymerase II subunit B3-1 (DPB3-1)/nuclear factor Y subunit C10 (NF-YC10) has been reported as a positive regulator of Dehydration-responsive element binding protein 2A (DREB2A), and the overexpression of DPB3-1 enhances heat stress tolerance without growth retardation. Here, we show that DPB3-1 interacts with DREB2A homologues in rice and soya bean. Transactivation analyses with Arabidopsis and rice mesophyll protoplasts indicate that DPB3-1 and its rice homologue OsDPB3-2 function as positive regulators of DREB2A homologues. Overexpression of DPB3-1 did not affect plant growth or yield in rice under nonstress conditions. Moreover, DPB3-1-overexpressing rice showed enhanced heat stress tolerance. Microarray analysis revealed that many heat stress-inducible genes were up-regulated in DPB3-1-overexpressing rice under heat stress conditions. However, the overexpression of DPB3-1 using a constitutive promoter had almost no effect on the expression of these genes under nonstress conditions. This may be because DPB3-1 is a coactivator and thus lacks inherent transcriptional activity. We conclude that DPB3-1, a coactivator that functions specifically under abiotic stress conditions, could be utilized to increase heat stress tolerance in crops without negative effects on vegetative and reproductive growth.


Subject(s)
Arabidopsis Proteins/genetics , DNA Polymerase II/genetics , Gene Expression Regulation, Plant , Glycine max/physiology , Oryza/physiology , Stress, Physiological/genetics , Arabidopsis Proteins/metabolism , CCAAT-Binding Factor/genetics , DNA Polymerase II/metabolism , Oryza/growth & development , Plants, Genetically Modified , Protoplasts , Glycine max/genetics , Transcription Factors/genetics
14.
Plant Physiol ; 167(3): 1039-57, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25614064

ABSTRACT

Protein phosphorylation events play key roles in maintaining cellular ion homeostasis in higher plants, and the regulatory roles of these events in Na(+) and K(+) transport have been studied extensively. However, the regulatory mechanisms governing Mg(2+) transport and homeostasis in higher plants remain poorly understood, despite the vital roles of Mg(2+) in cellular function. A member of subclass III sucrose nonfermenting-1-related protein kinase2 (SnRK2), SRK2D/SnRK2.2, functions as a key positive regulator of abscisic acid (ABA)-mediated signaling in response to water deficit stresses in Arabidopsis (Arabidopsis thaliana). Here, we used immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry analyses to identify Calcineurin B-like-interacting protein kinase26 (CIPK26) as a novel protein that physically interacts with SRK2D. In addition to CIPK26, three additional CIPKs (CIPK3, CIPK9, and CIPK23) can physically interact with SRK2D in planta. The srk2d/e/i triple mutant lacking all three members of subclass III SnRK2 and the cipk26/3/9/23 quadruple mutant lacking CIPK26, CIPK3, CIPK9, and CIPK23 showed reduced shoot growth under high external Mg(2+) concentrations. Similarly, several ABA biosynthesis-deficient mutants, including aba2-1, were susceptible to high external Mg(2+) concentrations. Taken together, our findings provided genetic evidence that SRK2D/E/I and CIPK26/3/9/23 are required for plant growth under high external Mg(2+) concentrations in Arabidopsis. Furthermore, we showed that ABA, a key molecule in water deficit stress signaling, also serves as a signaling molecule in plant growth under high external Mg(2+) concentrations. These results suggested that SRK2D/E/I- and CIPK26/3/9/23-mediated phosphorylation signaling pathways maintain cellular Mg(2+) homeostasis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Magnesium/pharmacology , Multigene Family , Plant Development/drug effects , Protein Kinases/metabolism , Abscisic Acid/biosynthesis , Arabidopsis/drug effects , Chromatography, Liquid , Immunoprecipitation , Models, Biological , Mutation/genetics , Phenotype , Phosphorylation/drug effects , Protein Binding/drug effects , Tandem Mass Spectrometry
15.
Plant Cell ; 24(8): 3393-405, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22942381

ABSTRACT

Arabidopsis thaliana DEHYDRATION-RESPONSIVE ELEMENT BINDING PROTEIN2A (DREB2A) functions as a transcriptional activator that increases tolerance to osmotic and heat stresses; however, its expression also leads to growth retardation and reduced reproduction. To avoid these adverse effects, the expression of DREB2A is predicted to be tightly regulated. We identified a short promoter region of DREB2A that represses its expression under nonstress conditions. Yeast one-hybrid screening for interacting factors identified GROWTH-REGULATING FACTOR7 (GRF7). GRF7 bound to the DREB2A promoter and repressed its expression. In both artificial miRNA-silenced lines and a T-DNA insertion line of GRF7, DREB2A transcription was increased compared with the wild type under nonstress conditions. A previously undiscovered cis-element, GRF7-targeting cis-element (TGTCAGG), was identified as a target sequence of GRF7 in the short promoter region of DREB2A via electrophoretic mobility shift assays. Microarray analysis of GRF7 knockout plants showed that a large number of the upregulated genes in the mutant plants were also responsive to osmotic stress and/or abscisic acid. These results suggest that GRF7 functions as a repressor of a broad range of osmotic stress-responsive genes to prevent growth inhibition under normal conditions.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Repressor Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Base Sequence , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Plant , Gene Knockout Techniques/methods , Genes, Plant , Genetic Vectors/genetics , Genetic Vectors/metabolism , Molecular Sequence Data , Osmosis , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Repressor Proteins/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription, Genetic , Transcriptional Activation , Two-Hybrid System Techniques , Up-Regulation
16.
Biochem Biophys Res Commun ; 450(1): 396-400, 2014 Jul 18.
Article in English | MEDLINE | ID: mdl-24942879

ABSTRACT

Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier protein Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.


Subject(s)
Arabidopsis/metabolism , Carrier Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Subcellular Fractions/metabolism , Tissue Distribution
17.
Plant Physiol ; 161(1): 346-61, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23151346

ABSTRACT

Soybean (Glycine max) is an important crop around the world. Abiotic stress conditions, such as drought and heat, adversely affect its survival, growth, and production. The DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2 (DREB2) group includes transcription factors that contribute to drought and heat stress tolerance by activating transcription through the cis-element dehydration-responsive element (DRE) in response to these stress stimuli. Two modes of regulation, transcriptional and posttranslational, are important for the activation of gene expression by DREB2A in Arabidopsis (Arabidopsis thaliana). However, the regulatory system of DREB2 in soybean is not clear. We identified a new soybean DREB2 gene, GmDREB2A;2, that was highly induced not only by dehydration and heat but also by low temperature. GmDREB2A;2 exhibited a high transactivation activity via DRE and has a serine/threonine-rich region, which corresponds to a negative regulatory domain of DREB2A that is involved in its posttranslational regulation, including destabilization. Despite the partial similarity between these sequences, the activity and stability of the GmDREB2A;2 protein were enhanced by removal of the serine/threonine-rich region in both Arabidopsis and soybean protoplasts, suggestive of a conserved regulatory mechanism that involves the recognition of serine/threonine-rich sequences with a specific pattern. The heterologous expression of GmDREB2A;2 in Arabidopsis induced DRE-regulated stress-inducible genes and improved stress tolerance. However, there were variations in the growth phenotypes of the transgenic Arabidopsis, the induced genes, and their induction ratios between GmDREB2A;2 and DREB2A. Therefore, the basic function and regulatory machinery of DREB2 have been maintained between Arabidopsis and soybean, although differentiation has also occurred.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/genetics , Protein Processing, Post-Translational , Soybean Proteins/metabolism , Adaptation, Physiological , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Droughts , Genes, Plant , Germination , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Phenotype , Phylogeny , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Protein Stability , Sequence Homology , Serine/metabolism , Soybean Proteins/genetics , Glycine max/growth & development , Glycine max/metabolism , Stress, Physiological , Threonine/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation
18.
Biochim Biophys Acta ; 1819(2): 86-96, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21867785

ABSTRACT

In terrestrial environments, temperature and water conditions are highly variable, and extreme temperatures and water conditions affect the survival, growth and reproduction of plants. To protect cells and sustain growth under such conditions of abiotic stress, plants respond to unfavourable changes in their environments in developmental, physiological and biochemical ways. These responses require expression of stress-responsive genes, which are regulated by a network of transcription factors. The AP2/ERF family is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. This transcription factor family includes DRE-binding proteins (DREBs), which activate the expression of abiotic stress-responsive genes via specific binding to the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element in their promoters. In this review, we discuss the functions of the AP2/ERF-type transcription factors in plant abiotic stress responses, with special emphasis on the regulations and functions of two major types of DREBs, DREB1/CBF and DREB2. In addition, we summarise the involvement of other AP2/ERF-type transcription factors in abiotic stress responses, which has recently become clear. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.


Subject(s)
Multigene Family , Plant Physiological Phenomena , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plants/classification , Plants/genetics , Stress, Physiological , Transcription Factors/genetics
19.
Biochim Biophys Acta ; 1819(2): 97-103, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22037288

ABSTRACT

Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.


Subject(s)
Plant Physiological Phenomena , Plant Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/genetics , Plants/classification , Plants/genetics , Stress, Physiological , Transcription Factors/genetics
20.
Plant J ; 70(4): 599-613, 2012 May.
Article in English | MEDLINE | ID: mdl-22225700

ABSTRACT

Membrane-anchored receptor-like protein kinases (RLKs) recognize extracellular signals at the cell surface and activate the downstream signaling pathway by phosphorylating specific target proteins. We analyzed a receptor-like cytosolic kinase (RLCK) gene, ARCK1, whose expression was induced by abiotic stress. ARCK1 belongs to the cysteine-rich repeat (CRR) RLK sub-family and encodes a cytosolic protein kinase. The arck1 mutant showed higher sensitivity than the wild-type to ABA and osmotic stress during the post-germinative growth phase. CRK36, an abiotic stress-inducible RLK belonging to the CRR RLK sub-family, was screened as a potential interacting factor with ARCK1 by co-expression analyses and a yeast two-hybrid system. CRK36 physically interacted with ARCK1 in plant cells, and the kinase domain of CRK36 phosphorylated ARCK1 in vitro. We generated CRK36 RNAi transgenic plants, and found that transgenic plants with suppressed CRK36 expression showed higher sensitivity than arck1-2 to ABA and osmotic stress during the post-germinative growth phase. Microarray analysis using CRK36 RNAi plants revealed that suppression of CRK36 up-regulates several ABA-responsive genes, such as LEA genes, oleosin, ABI4 and ABI5. These results suggest that CRK36 and ARCK1 form a complex and negatively control ABA and osmotic stress signal transduction.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Protein Kinases/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Blotting, Western , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Germination/drug effects , Germination/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Confocal , Mutation , Oligonucleotide Array Sequence Analysis , Phosphorylation , Plant Growth Regulators/pharmacology , Plants, Genetically Modified , Protein Binding , Protein Kinases/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Signal Transduction/genetics , Sodium Chloride/pharmacology , Two-Hybrid System Techniques , Water/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL