Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters

Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(21): e2208276120, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37186859

ABSTRACT

Iron-chalcogenide superconductors FeSe1-xSx possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (µSR) measurements in FeSe1-xSx superconductors for 0 ≤ x ≤ 0.22 covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperature Tc for all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-field µSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x > 0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1-xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

2.
Proc Natl Acad Sci U S A ; 119(18): e2110501119, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35486694

ABSTRACT

SignificanceThe notion of the quantum critical point (QCP) is at the core of modern condensed matter physics. Near a QCP of the symmetry-breaking order, associated quantum-mechanical fluctuations are intensified, which can lead to unconventional superconductivity. Indeed, dome-shaped superconducting phases are often observed near the magnetic QCPs, which supports the spin fluctuation-driven superconductivity. However, the fundamental question remains as to whether a nonmagnetic QCP of electronic nematic order characterized by spontaneous rotational symmetry breaking can promote superconductivity in real materials. Here, we provide an experimental demonstration that a pure nematic QCP exists near the center of a superconducting dome in nonmagnetic FeSe[Formula: see text] Tex. This result evidences that nematic fluctuations enhanced around the nematic QCP can boost superconductivity.

3.
Proc Natl Acad Sci U S A ; 117(12): 6424-6429, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32165540

ABSTRACT

Electronic nematicity, a correlated state that spontaneously breaks rotational symmetry, is observed in several layered quantum materials. In contrast to their liquid-crystal counterparts, the nematic director cannot usually point in an arbitrary direction (XY nematics), but is locked by the crystal to discrete directions (Ising nematics), resulting in strongly anisotropic fluctuations above the transition. Here, we report on the observation of nearly isotropic XY-nematic fluctuations, via elastoresistance measurements, in hole-doped Ba1-x Rb x Fe2As2 iron-based superconductors. While for [Formula: see text], the nematic director points along the in-plane diagonals of the tetragonal lattice, for [Formula: see text], it points along the horizontal and vertical axes. Remarkably, for intermediate doping, the susceptibilities of these two symmetry-irreducible nematic channels display comparable Curie-Weiss behavior, thus revealing a nearly XY-nematic state. This opens a route to assess this elusive electronic quantum liquid-crystalline state.

4.
Proc Natl Acad Sci U S A ; 113(29): 8139-43, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27382157

ABSTRACT

In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

5.
Proc Natl Acad Sci U S A ; 111(46): 16309-13, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25378706

ABSTRACT

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

6.
Proc Natl Acad Sci U S A ; 110(9): 3293-7, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23404698

ABSTRACT

When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these "quantum critical" superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature T(c) often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below T(c) is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points, showing that the superfluid density in these nodal superconductors universally exhibits, unlike the expected T-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this noninteger power law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k close to the nodes in the superconducting energy gap Δ(k). We suggest that such "nodal criticality" may have an impact on low-energy properties of quantum critical superconductors.

7.
ACS Macro Lett ; : 252-259, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334272

ABSTRACT

Unnatural polysaccharide analogs and their biological activities and material properties have attracted considerable research interest. However, these efforts often encounter challenges, especially those related to synthetic complexity and scalability. Here, we report the chemical synthesis of unnatural (1→6)-polysaccharides using levoglucosenone (LGO) and dihydrolevoglucosenone (Cyrene), which are derived from cellulose. Using a versatile monomer synthesis from LGO and Cyrene and cationic ring-opening polymerization, (1→6)-polysaccharides with various tailored substituent patterns are obtained. Additionally, environmentally benign and easy-to-handle organic Brønsted acid catalysts are investigated. This study demonstrates well-controlled first-order polymerization kinetics for the reactive (1S,5R)-6,8-dioxabicyclo[3,2,1]octane (DBO) monomer. The synthesized (1→6)-polysaccharides exhibit high thermal stability and form amorphous solids under ambient conditions, which could be processed into highly transparent self-standing films. Additionally, these polymers exhibit excellent closed-loop chemical recyclability. This study provides an important approach to explore the chemical spaces of unnatural polysaccharides and contributes to the development of sustainable polymer materials from abundant biomass resources.

8.
Sci Adv ; 10(11): eadk3539, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478600

ABSTRACT

The field-induced quantum-disordered state of layered honeycomb magnet α-RuCl3 is a prime candidate for Kitaev spin liquids hosting Majorana fermions and non-Abelian anyons. Recent observations of anomalous planar thermal Hall effect demonstrate a topological edge mode, but whether it originates from Majorana fermions or bosonic magnons remains controversial. Here, we distinguish these origins from combined low-temperature measurements of high-resolution specific heat and thermal Hall conductivity with rotating magnetic fields within the honeycomb plane. A distinct closure of the low-energy bulk gap is observed for the fields in the Ru-Ru bond direction, and the gap opens rapidly when the field is tilted. Notably, this change occurs concomitantly with the sign reversal of the Hall effect. General discussions of topological bands show that this is the hallmark of an angle rotation-induced topological transition of fermions, providing conclusive evidence for the Majorana-fermion origin of the thermal Hall effect in α-RuCl3.

9.
Nat Commun ; 14(1): 2966, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221184

ABSTRACT

Chiral spin-triplet superconductivity is a topologically nontrivial pairing state with broken time-reversal symmetry, which can host Majorana quasiparticles. The heavy-fermion superconductor UTe2 exhibits peculiar properties of spin-triplet pairing, and the possible chiral state has been actively discussed. However, the symmetry and nodal structure of its order parameter in the bulk, which determine the Majorana surface states, remains controversial. Here we focus on the number and positions of superconducting gap nodes in the ground state of UTe2. Our magnetic penetration depth measurements for three field orientations in three crystals all show the power-law temperature dependence with exponents close to 2, which excludes single-component spin-triplet states. The anisotropy of low-energy quasiparticle excitations indicates multiple point nodes near the ky- and kz-axes in momentum space. These results can be consistently explained by a chiral B3u + iAu non-unitary state, providing fundamentals of the topological properties in UTe2.

10.
Nat Commun ; 14(1): 1260, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36898999

ABSTRACT

Bose-Einstein condensation (BEC) in quantum magnets, where bosonic spin excitations condense into ordered ground states, is a realization of BEC in a thermodynamic limit. Although previous magnetic BEC studies have focused on magnets with small spins of S ≤ 1, larger spin systems potentially possess richer physics because of the multiple excitations on a single site level. Here, we show the evolution of the magnetic phase diagram of S = 3/2 quantum magnet Ba2CoGe2O7 when the averaged interaction J is controlled by a dilution of magnetic sites. By partial substitution of Co with nonmagnetic Zn, the magnetic order dome transforms into a double dome structure, which can be explained by three kinds of magnetic BECs with distinct excitations. Furthermore, we show the importance of the randomness effects induced by the quenched disorder: we discuss the relevance of geometrical percolation and Bose/Mott glass physics near the BEC quantum critical point.

11.
Sci Adv ; 6(45)2020 Nov.
Article in English | MEDLINE | ID: mdl-33158862

ABSTRACT

The crossover from the superconductivity of the Bardeen-Cooper-Schrieffer (BCS) regime to the Bose-Einstein condensation (BEC) regime holds a key to understanding the nature of pairing and condensation of fermions. It has been mainly studied in ultracold atoms, but in solid systems, fundamentally previously unknown insights may be obtained because multiple energy bands and coexisting electronic orders strongly affect spin and orbital degrees of freedom. Here, we provide evidence for the BCS-BEC crossover in iron-based superconductors FeSe1 - x S x from laser-excited angle-resolved photoemission spectroscopy. The system enters the BEC regime with x = 0.21, where the nematic state that breaks the orbital degeneracy is fully suppressed. The substitution dependence is opposite to the expectation for single-band superconductors, which calls for a new mechanism of BCS-BEC crossover in this system.

12.
Sci Adv ; 3(6): e1601667, 2017 06.
Article in English | MEDLINE | ID: mdl-28691082

ABSTRACT

In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

SELECTION OF CITATIONS
SEARCH DETAIL