Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Hum Mol Genet ; 23(23): 6223-34, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-24990152

ABSTRACT

Cerebral cavernous malformation (CCM) is a disease of vascular malformations known to be caused by mutations in one of three genes: CCM1, CCM2 or CCM3. Despite several studies, the mechanism of CCM lesion onset remains unclear. Using a Ccm1 knockout mouse model, we studied the morphogenesis of early lesion formation in the retina in order to provide insight into potential mechanisms. We demonstrate that lesions develop in a stereotypic location and pattern, preceded by endothelial hypersprouting as confirmed in a zebrafish model of disease. The vascular defects seen with loss of Ccm1 suggest a defect in endothelial flow response. Taken together, these results suggest new mechanisms of early CCM disease pathogenesis and provide a framework for further study.


Subject(s)
Hemangioma, Cavernous, Central Nervous System/pathology , Microtubule-Associated Proteins/genetics , Proto-Oncogene Proteins/genetics , Retina/pathology , Animals , Animals, Genetically Modified , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Humans , KRIT1 Protein , Mice, Knockout , Microtubule-Associated Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Zebrafish
3.
Small GTPases ; 10(1): 1-12, 2019 01.
Article in English | MEDLINE | ID: mdl-28001501

ABSTRACT

The activation of the small GTPase ARF6 has been implicated in promoting several pathological processes related to vascular instability and tumor formation, growth, and metastasis. ARF6 also plays a vital role during embryonic development. Recent studies have suggested that ARF6 carries out these disparate functions primarily by controlling protein trafficking within the cell. ARF6 helps direct proteins to intracellular or extracellular locations where they function in normal cellular responses during development and in pathological processes later in life. This transport of proteins is accomplished through a variety of mechanisms, including endocytosis and recycling, microvesicle release, and as yet uncharacterized processes. This Commentary will explore the functions of ARF6, while focusing on the role of this small GTPase in development and postnatal physiology, regulating barrier function and diseases associated with its loss, and tumor formation, growth, and metastasis.


Subject(s)
ADP-Ribosylation Factors/physiology , ADP-Ribosylation Factor 6 , Animals , Embryonic Development , Endothelium, Vascular/physiology , Humans , Neoplasms/enzymology , Neoplasms/pathology , Protein Transport
4.
J Clin Invest ; 127(12): 4569-4582, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29058688

ABSTRACT

The devastating sequelae of diabetes mellitus include microvascular permeability, which results in retinopathy. Despite clinical and scientific advances, there remains a need for new approaches to treat retinopathy. Here, we have presented a possible treatment strategy, whereby targeting the small GTPase ARF6 alters VEGFR2 trafficking and reverses signs of pathology in 4 animal models that represent features of diabetic retinopathy and in a fifth model of ocular pathological angiogenesis. Specifically, we determined that the same signaling pathway utilizes distinct GEFs to sequentially activate ARF6, and these GEFs exert distinct but complementary effects on VEGFR2 trafficking and signal transduction. ARF6 activation was independently regulated by 2 different ARF GEFs - ARNO and GEP100. Interaction between VEGFR2 and ARNO activated ARF6 and stimulated VEGFR2 internalization, whereas a VEGFR2 interaction with GEP100 activated ARF6 to promote VEGFR2 recycling via coreceptor binding. Intervening in either pathway inhibited VEGFR2 signal output. Finally, using a combination of in vitro, cellular, genetic, and pharmacologic techniques, we demonstrated that ARF6 is pivotal in VEGFR2 trafficking and that targeting ARF6-mediated VEGFR2 trafficking has potential as a therapeutic approach for retinal vascular diseases such as diabetic retinopathy.


Subject(s)
ADP-Ribosylation Factors/metabolism , Diabetic Retinopathy/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Cell Line , Diabetic Retinopathy/genetics , Diabetic Retinopathy/pathology , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Humans , Protein Transport , Vascular Endothelial Growth Factor Receptor-2/genetics
5.
Cancer Cell ; 29(6): 889-904, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27265506

ABSTRACT

Activating mutations in Gαq proteins, which form the α subunit of certain heterotrimeric G proteins, drive uveal melanoma oncogenesis by triggering multiple downstream signaling pathways, including PLC/PKC, Rho/Rac, and YAP. Here we show that the small GTPase ARF6 acts as a proximal node of oncogenic Gαq signaling to induce all of these downstream pathways as well as ß-catenin signaling. ARF6 activates these diverse pathways through a common mechanism: the trafficking of GNAQ and ß-catenin from the plasma membrane to cytoplasmic vesicles and the nucleus, respectively. Blocking ARF6 with a small-molecule inhibitor reduces uveal melanoma cell proliferation and tumorigenesis in a mouse model, confirming the functional relevance of this pathway and suggesting a therapeutic strategy for Gα-mediated diseases.


Subject(s)
ADP-Ribosylation Factors/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Melanoma/drug therapy , Small Molecule Libraries/administration & dosage , Uveal Neoplasms/drug therapy , beta Catenin/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/antagonists & inhibitors , ADP-Ribosylation Factors/genetics , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cytoplasm/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Humans , Melanoma/genetics , Melanoma/metabolism , Mice , Neoplasm Transplantation , Protein Transport/drug effects , Signal Transduction/drug effects , Small Molecule Libraries/pharmacology , Uveal Neoplasms/genetics , Uveal Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL