Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Proc Natl Acad Sci U S A ; 119(19): e2121653119, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35507872

ABSTRACT

Glutamate transporters carry out the concentrative uptake of glutamate by harnessing the ionic gradients present across cellular membranes. A central step in the transport mechanism is the coupled binding of Na+ and substrate. The sodium coupled Asp transporter, GltPh is an archaeal homolog of glutamate transporters that has been extensively used to probe the transport mechanism. Previous studies have shown that hairpin-2 (HP2) functions as the extracellular gate for the aspartate binding site and plays a key role in the coupled binding of sodium and aspartate to GltPh. The binding sites for three Na+ ions (Na1-3) have been identified in GltPh, but the specific roles of the individual Na+ sites in the binding process have not been elucidated. In this study, we developed assays to probe Na+ binding to the Na1 and Na3 sites and to monitor the conformational switch in the NMDGT motif. We used these assays along with a fluorescence assay to monitor HP2 movement and EPR spectroscopy to show that Na+ binding to the Na3 site is required for the NMDGT conformational switch while Na+ binding to the Na1 site is responsible for the partial opening of HP2. Complete opening of HP2 requires the conformational switch of the NMDGT motif and therefore Na+ binding to both the Na1 and the Na3 sites. Based on our studies, we also propose an alternate pathway for the coupled binding of Na+ and Asp.


Subject(s)
Amino Acid Transport System X-AG , Sodium , Amino Acid Transport System X-AG/chemistry , Binding Sites , Glutamic Acid/metabolism , Ions/metabolism , Sodium/metabolism
2.
J Am Chem Soc ; 146(12): 7915-7921, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38488295

ABSTRACT

A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.


Subject(s)
Iron , Superoxides , Ferrous Compounds , Oxygen
3.
J Am Chem Soc ; 145(4): 2230-2242, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36652374

ABSTRACT

Transition-metal-mediated reductive coupling of nitric oxide (NO(g)) to nitrous oxide (N2O(g)) has significance across the fields of industrial chemistry, biochemistry, medicine, and environmental health. Herein, we elucidate a density functional theory (DFT)-supplemented mechanism of NO(g) reductive coupling at a copper-ion center, [(tmpa)CuI(MeCN)]+ (1) {tmpa = tris(2-pyridylmethyl)amine}. At -110 °C in EtOH (<-90 °C in MeOH), exposing 1 to NO(g) leads to a new binuclear hyponitrite intermediate [{(tmpa)CuII}2(µ-N2O22-)]2+ (2), exhibiting temperature-dependent irreversible isomerization to the previously characterized κ2-O,O'-trans-[(tmpa)2Cu2II(µ-N2O22-)]2+ (OOXray) complex. Complementary stopped-flow kinetic analysis of the reaction in MeOH reveals an initial mononitrosyl species [(tmpa)Cu(NO)]+ (1-(NO)) that binds a second NO molecule, forming a dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2). The decay of 1-(NO)2 requires an available starting complex 1 to form a dicopper-dinitrosyl species hypothesized to be [{(tmpa)Cu}2(µ-NO)2]2+ (D) bearing a diamond-core motif, en route to the formation of hyponitrite intermediate 2. In contrast, exposing 1 to NO(g) in 2-MeTHF/THF (v/v 4:1) at <-80 °C leads to the newly observed transient metastable dinitrosyl species [(tmpa)CuII(NO)2] (1-(NO)2) prior to its disproportionation-mediated transformation to the nitrite product [(tmpa)CuII(NO2)]+. Our study furnishes a near-complete profile of NO(g) activation at a reduced Cu site with tripodal tetradentate ligation in two distinctly different solvents, aided by detailed spectroscopic characterization of metastable intermediates, including resonance Raman characterization of the new dinitrosyl and hyponitrite species detected.

4.
Inorg Chem ; 62(1): 392-400, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36538786

ABSTRACT

A five-coordinate, disiloxide-ligated cobalt(II) (S = 3/2) complex (1) was prepared as an oxygen-ligated analogue to the previously reported silanedithiolate-ligated CoII(Me3TACN)(S2SiMe2) (J. Am. Chem. Soc., 2019, 141, 3641-3653). The structural and spectroscopic properties of 1 were analyzed by single-crystal X-ray diffraction, electron paramagnetic resonance (EPR), and NMR spectroscopies. The reactivity of 1 with dioxygen was examined, and it was shown to bind O2 reversibly in a range of solvents at low temperatures. A cobalt(III)-superoxo complex, CoIII(O2·-)(Me3TACN)((OSi2Ph)2O) (2), was generated, and was analyzed by UV-vis, EPR, and resonance Raman spectroscopies. Unlike its sulfur-ligated analogue, complex 2 can thermally release O2 to regenerate 1. Vibrational assignments for selective 18O isotopic labeling of both O2 and disiloxide ligands in 2 are consistent with a 6-coordinate, Co(η1-O2·-)("end-on") complex. Complex 2 reacts with the O-H bond of 4-methoxy-2,2,6,6-tetramethylpiperidin-1-ol (4-MeO-TEMPOH) via H-atom abstraction with a rate of 0.58(2) M-1 s-1 at -105 °C, but it is unable to oxidize phenol substrates. This bracketed reactivity suggests that the O-H bond being formed in the putative CoIII(OOH) product has a relatively weak O-H bond strength (BDFE ∼66-74 kcal mol-1). These thermodynamic and kinetic parameters are similar to those seen for the sulfur-ligated Co(O2)(Me3TACN)(S2SiMe2), indicating that the differences in the electronic structure for O versus S ligation do not have a large impact on H-atom abstraction reactivity.


Subject(s)
Coordination Complexes , Oxygen , Molecular Structure , Oxygen/chemistry , Cobalt/chemistry , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Coordination Complexes/chemistry
5.
J Am Chem Soc ; 144(38): 17611-17621, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36099449

ABSTRACT

Hemerythrin-like proteins (HLPs) are broadly distributed across taxonomic groups and appear to play highly diverse functional roles in prokaryotes. Mycobacterial HLPs contribute to the survival of these pathogenic bacteria in mammalian macrophages, but their modes of action remain unclear. A recent crystallographic characterization of Mycobacterium kansasii HLP (Mka-HLP) revealed the unexpected presence of a tyrosine sidechain (Tyr54) near the coordination sphere of one of the two iron centers. Here, we show that Tyr54 is a true ligand to the Fe2(III) ion which, in conjunction with the presence of a µ-oxo group bridging the two iron(III), brings unique reactivity toward nitric oxide (NO). Monitoring the titration of Mka-HLP with NO by Fourier-transform infrared and electron paramagnetic resonance spectroscopies shows that both diferric and diferrous forms of Mka-HLP accumulate an uncoupled high-spin and low-spin {FeNO}7 pair. We assign the reactivity of the diferric protein to an initial radical reaction between NO and the µ-oxo bridge to form nitrite and a mixed-valent diiron center that can react further with NO. Amperometric measurements of NO consumption by Mka-HLP confirm that this reactivity can proceed at low micromolar concentrations of NO, before additional NO consumption, supporting a NO scavenging role for mycobacterial HLPs.


Subject(s)
Hemerythrin , Nitric Oxide , Animals , Ferric Compounds/chemistry , Hemerythrin/chemistry , Iron/chemistry , Ligands , Mammals , Nitrites , Tyrosine
6.
Inorg Chem ; 61(51): 20949-20963, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36493379

ABSTRACT

Multiheme proteins are important in energy conversion and biogeochemical cycles of nitrogen and sulfur. A diheme cytochrome c4 (c4) was used as a model to elucidate roles of the interdomain interface on properties of iron centers in its hemes A and B. Isolated monoheme domains c4-A and c4-B, together with the full-length diheme c4 and its Met-to-His ligand variants, were characterized by a variety of spectroscopic and stability measurements. In both isolated domains, the heme iron is Met/His-ligated at pH 5.0, as in the full-length c4, but becomes His/His-ligated in c4-B at higher pH. Intradomain contacts in c4-A are minimally affected by the separation of c4-A and c4-B domains, and isolated c4-A is folded. In contrast, the isolated c4-B is partially unfolded, and the interface with c4-A guides folding of this domain. The c4-A and c4-B domains have the propensity to interact even without the polypeptide linker. Thermodynamic cycles have revealed properties of monomeric folded isolated domains, suggesting that ferrous (FeII), but not ferric (FeIII) c4-A and c4-B, is stabilized by the interface. This study illustrates the effects of the interface on tuning structural and redox properties of multiheme proteins and enriches our understanding of redox-dependent complexation.


Subject(s)
Ferric Compounds , Iron , Ferric Compounds/chemistry , Oxidation-Reduction , Iron/chemistry , Spectrum Analysis , Heme/chemistry
7.
Inorg Chem ; 61(38): 14909-14917, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36107151

ABSTRACT

Addition of NO to a nonheme dithiolate-ligated iron(II) complex, FeII(Me3TACN)(S2SiMe2) (1), results in the generation of N2O. Low-temperature spectroscopic studies reveal a metastable six-coordinate {FeNO}7 intermediate (S = 3/2) that was trapped at -135 °C and was characterized by low-temperature UV-vis, resonance Raman, EPR, Mössbauer, XAS, and DFT studies. Thermal decay of the {FeNO}7 species leads to the evolution of N2O, providing a rare example of a mononuclear thiolate-ligated {FeNO}7 that mediates NO reduction to N2O without the requirement of any exogenous electron or proton sources.


Subject(s)
Iron , Protons , Electrons , Ferrous Compounds/chemistry , Iron/chemistry
8.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430446

ABSTRACT

Lysyl oxidase-2 (LOXL2) is a Cu2+ and lysine tyrosylquinone (LTQ)-dependent amine oxidase that catalyzes the oxidative deamination of peptidyl lysine and hydroxylysine residues to promote crosslinking of extracellular matrix proteins. LTQ is post-translationally derived from Lys653 and Tyr689, but its biogenesis mechanism remains still elusive. A 2.4 Å Zn2+-bound precursor structure lacking LTQ (PDB:5ZE3) has become available, where Lys653 and Tyr689 are 16.6 Å apart, thus a substantial conformational rearrangement is expected to take place for LTQ biogenesis. However, we have recently shown that the overall structures of the precursor (no LTQ) and the mature (LTQ-containing) LOXL2s are very similar and disulfide bonds are conserved. In this study, we aim to gain insights into the spatial arrangement of LTQ and the active site Cu2+ in the mature LOXL2 using a recombinant LOXL2 that is inhibited by 2-hydrazinopyridine (2HP). Comparative UV-vis and resonance Raman spectroscopic studies of the 2HP-inhibited LOXL2 and the corresponding model compounds and an EPR study of the latter support that 2HP-modified LTQ serves as a tridentate ligand to the active site Cu2. We propose that LTQ resides within 2.9 Å of the active site of Cu2+ in the mature LOXL2, and both LTQ and Cu2+ are solvent-exposed.


Subject(s)
Lysine , Protein-Lysine 6-Oxidase , Lysine/metabolism , Protein-Lysine 6-Oxidase/metabolism , Catalytic Domain , Quinones/chemistry
9.
Angew Chem Int Ed Engl ; 61(2): e202111492, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34850509

ABSTRACT

A new structurally characterized ferrous corrole [FeII (ttppc)]- (1) binds one equivalent of dioxygen to form [FeIII (O2-. )(ttppc)]- (2). This complex exhibits a 16/18 O2 -isotope sensitive ν(O-O) stretch at 1128 cm-1 concomitantly with a single ν(Fe-O2 ) at 555 cm-1 , indicating it is an η1 -superoxo ("end-on") iron(III) complex. Complex 2 is the first well characterized Fe-O2 corrole, and mediates the following biologically relevant oxidation reactions: dioxygenation of an indole derivative, and H-atom abstraction from an activated O-H bond.


Subject(s)
Oxygen
10.
Biochemistry ; 60(33): 2549-2559, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34324310

ABSTRACT

Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heme/chemistry , Heme/metabolism , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/metabolism , Sigma Factor/metabolism , Bacterial Proteins/genetics , Carrier Proteins/genetics , Chromatography, Liquid , Crystallography, X-Ray , Dipeptides/chemistry , Electron Spin Resonance Spectroscopy , Ferric Compounds/metabolism , Hydrogen Bonding , Models, Molecular , Mutagenesis, Site-Directed , Pseudomonas aeruginosa/genetics , Spectrum Analysis, Raman , Surface Plasmon Resonance , Tandem Mass Spectrometry
11.
J Am Chem Soc ; 143(51): 21637-21647, 2021 12 29.
Article in English | MEDLINE | ID: mdl-34913683

ABSTRACT

Addition of dioxygen at low temperature to the non-heme ferrous complex FeII(Me3TACN)((OSiPh2)2O) (1) in 2-MeTHF produces a peroxo-bridged diferric complex Fe2III(µ-O2)(Me3TACN)2((OSiPh2)2O)2 (2), which was characterized by UV-vis, resonance Raman, and variable field Mössbauer spectroscopies. Illumination of a frozen solution of 2 in THF with white light leads to homolytic O-O bond cleavage and generation of a FeIV(O) complex 4 (ν(Fe=O) = 818 cm-1; δ = 0.22 mm s-1, ΔEQ = 0.23 mm s-1). Variable field Mössbauer spectroscopy measurements show that 4 is a rare example of a high-spin S = 2 FeIV(O) complex and the first synthetic example to be generated directly from O2. Complex 4 is highly reactive, as expected for a high-spin ferryl, and decays rapidly in fluid solution at cryogenic temperatures. This decay process in 2-MeTHF involves C-H cleavage of the solvent. However, the controlled photolysis of 2 in situ with visible light and excess phenol substrate leads to competitive phenol oxidation, via the proposed transient generation of 4 as the active oxidant.


Subject(s)
Ferric Compounds/chemistry , Oxygen/chemistry , Models, Molecular , Molecular Structure , Phenols/chemistry
12.
J Am Chem Soc ; 143(5): 2384-2393, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33528256

ABSTRACT

Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(µ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.


Subject(s)
Biomimetic Materials/chemistry , Iron/chemistry , Metalloproteins/metabolism , Biotin/metabolism , Models, Molecular , Molecular Conformation , Streptavidin/metabolism
13.
Inorg Chem ; 60(11): 7762-7772, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33983027

ABSTRACT

Sulfide oxidation is accomplished by a new class of dioxomolybdenum(VI) catalyst (1) that uses the tridentate 2,6-bis[hydroxyl(methyl)amino]-4-morpholino-1,3,5-triazine ligand to form a five-coordinate molybdenum(VI) center. Resonance Raman spectra show that the dioxo groups on the Mo(VI) oxygens readily exchange with water in an acetonitrile media that allows 18O labeling of catalyst 1. The model oxidation reaction was the conversion of thioanisole (2) to the corresponding sulfoxide with 4% of 1 using an equimolar amount of H2O2 in MeCN-d3. Oxygen-18 labeling experiments with either 18O-labeled 1 or 18O-labeled H2O2 are consistent with a sulfide oxygenation pathway that uses a η1-Mo(OOH) hydroxoperoxyl species (3). The hypothesized intermediate 3 is initially formed in a proton transfer reaction between 1 and H2O2. Oxidation is hypothesized via nucleophilic attack of the sulfide on 3 that is supported from a Hammett linear free-energy relationship for para-derivatives of 2. A Hammett reactivity constant (ρ) of -1.2 ± 0.2 was obtained, which is consistent with other ρ values found in prior sulfide oxidation reactions by group 6 complexes. An Eyring plot of the 2 oxidation by 1 gives an Ea of 63.0 ± 5.2 kJ/mol, which is slightly higher than that of a similar oxidation of 2 by the molybdenum(VI) complex, oxodiperoxo (pyridine-2-carboxylato)molybdate(VI) bis(pyridine-2-carboxylic acid) monohydrate (5). Computational modeling with density functional theory (DFT) of the complete reaction profile gave enthalpy and entropy of activations (64 kJ/mol and -120 J/mol·K, respectively) within 1 standard deviation of the experimental values, further supporting the hypothesized mechanism.

14.
Proc Natl Acad Sci U S A ; 115(24): 6195-6200, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29802230

ABSTRACT

Despite high structural homology between NO reductases (NORs) and heme-copper oxidases (HCOs), factors governing their reaction specificity remain to be understood. Using a myoglobin-based model of NOR (FeBMb) and tuning its heme redox potentials (E°') to cover the native NOR range, through manipulating hydrogen bonding to the proximal histidine ligand and replacing heme b with monoformyl (MF-) or diformyl (DF-) hemes, we herein demonstrate that the E°' holds the key to reactivity differences between NOR and HCO. Detailed electrochemical, kinetic, and vibrational spectroscopic studies, in tandem with density functional theory calculations, demonstrate a strong influence of heme E°' on NO reduction. Decreasing E°' from +148 to -130 mV significantly impacts electronic properties of the NOR mimics, resulting in 180- and 633-fold enhancements in NO association and heme-nitrosyl decay rates, respectively. Our results indicate that NORs exhibit finely tuned E°' that maximizes their enzymatic efficiency and helps achieve a balance between opposite factors: fast NO binding and decay of dinitrosyl species facilitated by low E°' and fast electron transfer facilitated by high E°'. Only when E°' is optimally tuned in FeBMb(MF-heme) for NO binding, heme-nitrosyl decay, and electron transfer does the protein achieve multiple (>35) turnovers, previously not achieved by synthetic or enzyme-based NOR models. This also explains a long-standing question in bioenergetics of selective cross-reactivity in HCOs. Only HCOs with heme E°' in a similar range as NORs (between -59 and 200 mV) exhibit NOR reactivity. Thus, our work demonstrates efficient tuning of E°' in various metalloproteins for their optimal functionality.


Subject(s)
Heme , Oxidoreductases , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heme/chemistry , Heme/metabolism , Histidine/chemistry , Histidine/metabolism , Kinetics , Models, Molecular , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Spectrum Analysis
15.
Angew Chem Int Ed Engl ; 60(39): 21558-21564, 2021 09 20.
Article in English | MEDLINE | ID: mdl-34415659

ABSTRACT

A new nonheme iron(II) complex, FeII (Me3 TACN)((OSiPh2 )2 O) (1), is reported. Reaction of 1 with NO(g) gives a stable mononitrosyl complex Fe(NO)(Me3 TACN)((OSiPh2 )2 O) (2), which was characterized by Mössbauer (δ=0.52 mm s-1 , |ΔEQ |=0.80 mm s-1 ), EPR (S=3/2), resonance Raman (RR) and Fe K-edge X-ray absorption spectroscopies. The data show that 2 is an {FeNO}7 complex with an S=3/2 spin ground state. The RR spectrum (λexc =458 nm) of 2 combined with isotopic labeling (15 N, 18 O) reveals ν(N-O)=1680 cm-1 , which is highly activated, and is a nearly identical match to that seen for the reactive mononitrosyl intermediate in the nonheme iron enzyme FDPnor (ν(NO)=1681 cm-1 ). Complex 2 reacts rapidly with H2 O in THF to produce the N-N coupled product N2 O, providing the first example of a mononuclear nonheme iron complex that is capable of converting NO to N2 O in the absence of an exogenous reductant.


Subject(s)
Ferrous Compounds/chemistry , Nitric Oxide/chemistry , Nitrous Oxide/chemistry , Reducing Agents/chemistry , Molecular Conformation
16.
Proc Natl Acad Sci U S A ; 114(13): 3421-3426, 2017 03 28.
Article in English | MEDLINE | ID: mdl-28289188

ABSTRACT

A heme-dependent conformational rearrangement of the C-terminal domain of heme binding protein (PhuS) is required for interaction with the iron-regulated heme oxygenase (HemO). Herein, we further investigate the underlying mechanism of this conformational rearrangement and its implications for heme transfer via site-directed mutagenesis, resonance Raman (RR), hydrogen-deuterium exchange MS (HDX-MS) methods, and molecular dynamics (MD). HDX-MS revealed that the apo-PhuS C-terminal α6/α7/α8-helices are largely unstructured, whereas the apo-PhuS H212R variant showed an increase in structure within these regions. The increased rate of heme association with apo-PhuS H212R compared with the WT and lack of a detectable five-coordinate high-spin (5cHS) heme intermediate are consistent with a more folded and less dynamic C-terminal domain. HDX-MS and MD of holo-PhuS indicate an overall reduction in molecular flexibility throughout the protein, with significant structural rearrangement and protection of the heme binding pocket. We observed slow cooperative unfolding/folding events within the C-terminal helices of holo-PhuS and the N-terminal α1/α2-helices that are dampened or eliminated in the holo-PhuS H212R variant. Chemical cross-linking and MALDI-TOF MS mapped these same regions to the PhuS:HemO protein-protein interface. We previously proposed that the protein-protein interaction induces conformational rearrangement, promoting a ligand switch from His-209 to His-212 and triggering heme release to HemO. The reduced conformational freedom of holo-PhuS H212R combined with the increase in entropy and decrease in heme transfer on interaction with HemO further support this model. This study provides significant insight into the role of protein dynamics in heme binding and release in bacterial heme transport proteins.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Hemeproteins/chemistry , Hemeproteins/metabolism , Pseudomonas aeruginosa/metabolism , Allosteric Regulation , Bacterial Proteins/genetics , Carrier Proteins/genetics , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme-Binding Proteins , Hemeproteins/genetics , Ligands , Protein Binding , Protein Structure, Secondary , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics
17.
Biochemistry ; 58(6): 706-713, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30605596

ABSTRACT

The LodA-like proteins make up a recently identified family of enzymes that rely on a cysteine tryptophylquinone cofactor for catalysis. They differ from other tryptophylquinone enzymes in that they are oxidases rather than dehydrogenases. GoxA is a member of this family that catalyzes the oxidative deamination of glycine. Our previous work with GoxA from Pseudoalteromonas luteoviolacea demonstrated that this protein forms a stable intermediate upon anaerobic incubation with glycine. The spectroscopic properties of this species were unique among those identified for tryptophylquinone enzymes characterized to date. Here we use X-ray crystallography and resonance Raman spectroscopy to identify the GoxA catalytic intermediate as a product Schiff base. Structural work additionally highlights features of the active site pocket that confer substrate specificity, intermediate stabilization, and catalytic activity. The unusual properties of GoxA are discussed within the context of the other tryptophylquinone enzymes.


Subject(s)
Amino Acid Oxidoreductases/chemistry , Glycine/chemistry , Schiff Bases/chemistry , Catalytic Domain , Oxygen/chemistry , Pseudoalteromonas/enzymology , Spectrum Analysis, Raman , Stereoisomerism
18.
J Am Chem Soc ; 141(44): 17533-17547, 2019 11 06.
Article in English | MEDLINE | ID: mdl-31647656

ABSTRACT

The activation of dioxygen by FeII(Me3TACN)(S2SiMe2) (1) is reported. Reaction of 1 with O2 at -135 °C in 2-MeTHF generates a thiolate-ligated (peroxo)diiron complex FeIII2(O2)(Me3TACN)2(S2SiMe2)2 (2) that was characterized by UV-vis (λmax = 300, 390, 530, 723 nm), Mössbauer (δ = 0.53, |ΔEQ| = 0.76 mm s-1), resonance Raman (RR) (ν(O-O) = 849 cm-1), and X-ray absorption (XAS) spectroscopies. Complex 2 is distinct from the outer-sphere oxidation product 1ox (UV-vis (λmax = 435, 520, 600 nm), Mössbauer (δ = 0.45, |ΔEQ| = 3.6 mm s-1), and EPR (S = 5/2, g = [6.38, 5.53, 1.99])), obtained by one-electron oxidation of 1. Cleavage of the peroxo O-O bond can be initiated either photochemically or thermally to produce a new species assigned as an FeIV(O) complex, FeIV(O)(Me3TACN)(S2SiMe2) (3), which was identified by UV-vis (λmax = 385, 460, 890 nm), Mössbauer (δ = 0.21, |ΔEQ| = 1.57 mm s-1), RR (ν(FeIV═O) = 735 cm-1), and X-ray absorption spectroscopies, as well as reactivity patterns. Reaction of 3 at low temperature with H atom donors gives a new species, FeIII(OH)(Me3TACN)(S2SiMe2) (4). Complex 4 was independently synthesized from 1 by the stoichiometric addition of a one-electron oxidant and a hydroxide source. This work provides a rare example of dioxygen activation at a mononuclear nonheme iron(II) complex that produces both FeIII-O-O-FeIII and FeIV(O) species in the same reaction with O2. It also demonstrates the feasibility of forming Fe/O2 intermediates with strongly donating sulfur ligands while avoiding immediate sulfur oxidation.


Subject(s)
Coordination Complexes/chemistry , Oxygen/chemistry , Coordination Complexes/radiation effects , Density Functional Theory , Iron/chemistry , Ligands , Light , Models, Chemical , Molecular Structure , Oxidation-Reduction , Oxygen/radiation effects , X-Ray Absorption Spectroscopy
19.
J Am Chem Soc ; 141(8): 3641-3653, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30776222

ABSTRACT

The synthesis and characterization of a Co(II) dithiolato complex Co(Me3TACN)(S2SiMe2) (1) are reported. Reaction of 1 with O2 generates a rare thiolate-ligated cobalt-superoxo species Co(O2)(Me3TACN)(S2SiMe2) (2) that was characterized spectroscopically and structurally by resonance Raman, EPR, and X-ray absorption spectroscopies as well as density functional theory. Metal-superoxo species are proposed to S-oxygenate metal-bound thiolate donors in nonheme thiol dioxygenases, but 2 does not lead to S-oxygenation of the intramolecular thiolate donors and does not react with exogenous sulfur donors. However, complex 2 is capable of oxidizing the O-H bonds of 2,2,6,6-tetramethylpiperidin-1-ol derivatives via H atom abstraction. Complementary proton-coupled electron-transfer reactivity is seen for 2 with separated proton/reductant pairs. The reactivity studies indicate that 2 can abstract H atoms from weak X-H bonds with bond dissociation free energy (BDFE) ≤ 70 kcal mol-1. DFT calculations predict that the putative Co(OOH) product has an O-H BDFE = 67 kcal mol-1, which matches the observed pattern of reactivity seen for 2. These data provide new information regarding the selectivity of S-oxygenation versus H atom abstraction in thiolate-ligated nonheme metalloenzymes that react with O2.


Subject(s)
Cobalt/chemistry , Coordination Complexes/chemistry , Density Functional Theory , Hydrogen/chemistry , Sulfhydryl Compounds/chemistry , Superoxides/chemistry , Coordination Complexes/chemical synthesis , Electron Spin Resonance Spectroscopy , Molecular Structure , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman
20.
J Am Chem Soc ; 141(14): 5942-5960, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30860832

ABSTRACT

High-valent ferryl species (e.g., (Por)FeIV═O, Cmpd-II) are observed or proposed key oxidizing intermediates in the catalytic cycles of heme-containing enzymes (P-450s, peroxidases, catalases, and cytochrome c oxidase) involved in biological respiration and oxidative metabolism. Herein, various axially ligated iron(IV)-oxo complexes were prepared to examine the influence of the identity of the base. These were generated by addition of various axial ligands (1,5-dicyclohexylimidazole (DCHIm), a tethered-imidazole system, and sodium derivatives of 3,5-dimethoxyphenolate and imidazolate). Characterization was carried out via UV-vis, electron paramagnetic resonance (EPR), 57Fe Mössbauer, Fe X-ray absorption (XAS), and 54/57Fe resonance Raman (rR) spectroscopies to confirm their formation and compare the axial ligand perturbation on the electronic and geometric structures of these heme iron(IV)-oxo species. Mössbauer studies confirmed that the axially ligated derivatives were iron(IV) and six-coordinate complexes. XAS and 54/57Fe rR data correlated with slight elongation of the iron-oxo bond with increasing donation from the axial ligands. The first reported synthetic H-bonded iron(IV)-oxo heme systems were made in the presence of the protic Lewis acid, 2,6-lutidinium triflate (LutH+), with (or without) DCHIm. Mössbauer, rR, and XAS spectroscopic data indicated the formation of molecular Lewis acid ferryl adducts (rather than full protonation). The reduction potentials of these novel Lewis acid adducts were bracketed through addition of outer-sphere reductants. The oxidizing capabilities of the ferryl species with or without Lewis acid vary drastically; addition of LutH+ to F8Cmpd-II (F8 = tetrakis(2,6-difluorophenyl)porphyrinate) increased its reduction potential by more than 890 mV, experimentally confirming that H-bonding interactions can increase the reactivity of ferryl species.


Subject(s)
Electrons , Heme/chemistry , Iron/chemistry , Lewis Acids/chemistry , Imidazoles/chemistry , Ligands , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL